所以橢圓的方程是:. -------5分 查看更多

 

題目列表(包括答案和解析)

以下四個(gè)命題:
①?q是?p的必要不充分條件,則p是q的充分不必要條件;
②和定點(diǎn)A(5,0)及定直線l:x=
25
4
的距離之比為
5
4
的點(diǎn)的軌跡方程為
x2
16
-
y2
9
=1
;
③當(dāng)d無(wú)限趨近于0時(shí),
3+d
-
3
d
無(wú)限趨近于
3
6
;
④設(shè)點(diǎn)F1(0,-3),F(xiàn)2(0,3),點(diǎn)P滿足|PF1|+|PF2|=a+
9
a
(a>0)
,則點(diǎn)P的軌跡為橢圓;
其中真命題為
(寫出所以真命題的序號(hào)).

查看答案和解析>>

以下四個(gè)命題:
①¬q是¬p的必要不充分條件,則p是q的充分不必要條件;
②和定點(diǎn)A(5,0)及定直線的距離之比為的點(diǎn)的軌跡方程為
③當(dāng)d無(wú)限趨近于0時(shí),無(wú)限趨近于;
④設(shè)點(diǎn)F1(0,-3),F(xiàn)2(0,3),點(diǎn)P滿足,則點(diǎn)P的軌跡為橢圓;
其中真命題為    (寫出所以真命題的序號(hào)).

查看答案和解析>>

設(shè)橢圓 )的一個(gè)頂點(diǎn)為,,分別是橢圓的左、右焦點(diǎn),離心率 ,過橢圓右焦點(diǎn) 的直線  與橢圓 交于 , 兩點(diǎn).

(1)求橢圓的方程;

(2)是否存在直線 ,使得 ,若存在,求出直線  的方程;若不存在,說(shuō)明理由;

【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關(guān)系的運(yùn)用。(1)中橢圓的頂點(diǎn)為,即又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714546570844292_ST.files/image015.png">,得到,然后求解得到橢圓方程(2)中,對(duì)直線分為兩種情況討論,當(dāng)直線斜率存在時(shí),當(dāng)直線斜率不存在時(shí),聯(lián)立方程組,結(jié)合得到結(jié)論。

解:(1)橢圓的頂點(diǎn)為,即

,解得, 橢圓的標(biāo)準(zhǔn)方程為 --------4分

(2)由題可知,直線與橢圓必相交.

①當(dāng)直線斜率不存在時(shí),經(jīng)檢驗(yàn)不合題意.                    --------5分

②當(dāng)直線斜率存在時(shí),設(shè)存在直線,且,.

,       ----------7分

,,               

   = 

所以,                               ----------10分

故直線的方程為 

 

查看答案和解析>>

已知點(diǎn)為圓上的動(dòng)點(diǎn),且不在軸上,軸,垂足為,線段中點(diǎn)的軌跡為曲線,過定點(diǎn)任作一條與軸不垂直的直線,它與曲線交于、兩點(diǎn)。

(I)求曲線的方程;

(II)試證明:在軸上存在定點(diǎn),使得總能被軸平分

【解析】第一問中設(shè)為曲線上的任意一點(diǎn),則點(diǎn)在圓上,

,曲線的方程為

第二問中,設(shè)點(diǎn)的坐標(biāo)為,直線的方程為,  ………………3分   

代入曲線的方程,可得 

,∴

確定結(jié)論直線與曲線總有兩個(gè)公共點(diǎn).

然后設(shè)點(diǎn),的坐標(biāo)分別, ,則,  

要使軸平分,只要得到。

(1)設(shè)為曲線上的任意一點(diǎn),則點(diǎn)在圓上,

,曲線的方程為.  ………………2分       

(2)設(shè)點(diǎn)的坐標(biāo)為,直線的方程為,  ………………3分   

代入曲線的方程,可得 ,……5分            

,∴

∴直線與曲線總有兩個(gè)公共點(diǎn).(也可根據(jù)點(diǎn)M在橢圓的內(nèi)部得到此結(jié)論)

………………6分

設(shè)點(diǎn),的坐標(biāo)分別, ,則,   

要使軸平分,只要,            ………………9分

,        ………………10分

也就是,,

,即只要  ………………12分  

當(dāng)時(shí),(*)對(duì)任意的s都成立,從而總能被軸平分.

所以在x軸上存在定點(diǎn),使得總能被軸平分

 

查看答案和解析>>

2003年10月15日9時(shí),“神舟”五號(hào)載人飛船發(fā)射升空,于9時(shí)9分50秒準(zhǔn)確進(jìn)入預(yù)定軌道,開始巡天飛行.該軌道是以地球的中心F2為一個(gè)焦點(diǎn)的橢圓.選取坐標(biāo)系如圖所示,橢圓中心在原點(diǎn).近地點(diǎn)A距地面200 km,遠(yuǎn)地點(diǎn)B距地面350 km.已知地球半徑R=6 371 km.

(1)求飛船飛行的橢圓軌道的方程;

(2)飛船繞地球飛行了十四圈后,于16日5時(shí)59分返回艙與推進(jìn)艙分離,結(jié)束巡天飛行,飛船共巡天飛行了約6×105 km,問飛船巡天飛行的平均速度是多少?(結(jié)果精確到1 km/s)(注:km/s即千米/秒)

查看答案和解析>>


同步練習(xí)冊(cè)答案