由條件.消去.得, 查看更多

 

題目列表(包括答案和解析)

設(shè)橢圓的左、右頂點(diǎn)分別為,點(diǎn)在橢圓上且異于兩點(diǎn),為坐標(biāo)原點(diǎn).

(Ⅰ)若直線的斜率之積為,求橢圓的離心率;

(Ⅱ)若,證明直線的斜率 滿足

【解析】(1)解:設(shè)點(diǎn)P的坐標(biāo)為.由題意,有  ①

,得

,可得,代入①并整理得

由于,故.于是,所以橢圓的離心率

(2)證明:(方法一)

依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.

由條件得消去并整理得  ②

,

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.

由P在橢圓上,有

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118494193384555_ST.files/image036.png">,,所以,即   ③

,得整理得.

于是,代入③,

整理得

解得,

所以.

 

查看答案和解析>>

設(shè)雙曲線的兩個(gè)焦點(diǎn)分別為、,離心率為2.

(1)求雙曲線的漸近線方程;

(2)過(guò)點(diǎn)能否作出直線,使與雙曲線交于、兩點(diǎn),且,若存在,求出直線方程,若不存在,說(shuō)明理由.

【解析】(1)根據(jù)離心率先求出a2的值,然后令雙曲線等于右側(cè)的1為0,解此方程可得雙曲線的漸近線方程.

(2)設(shè)直線l的方程為,然后直線方程與雙曲線方程聯(lián)立,消去y,得到關(guān)于x的一元二次方程,利用韋達(dá)定理表示此條件,得到關(guān)于k的方程,解出k的值,然后驗(yàn)證判別式是否大于零即可.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案