.比較與T的大小關(guān)系.并給出證明, 查看更多

 

題目列表(包括答案和解析)

設(shè)t=a+2b,S=a+b2+1,則S與t的大小關(guān)系是( 。

查看答案和解析>>

函數(shù)f(x)=1-ax2(a>0,x>0),該函數(shù)圖象在點P(x0,1-ax02) 處的切線為l,設(shè)切線l 分別交x 軸和y 軸于兩點M和N.
(1)將△MON (O 為坐標(biāo)原點)的面積S 表示為x0 的函數(shù)S(x0);
(2)若在x0=1處,S(x0)取得最小值,求此時a的值及S(x0)的最小值;
(3)若記M點的坐標(biāo)為M(m,0),函數(shù)y=f(x) 的圖象與x軸交于點T(t,0),則m與t的大小關(guān)系如何?證明你的結(jié)論.

查看答案和解析>>

(本小題滿分14分)

已知數(shù)列滿足

(1)求;

(2)數(shù)列滿足,且

.證明當(dāng)時, ;

(3)在(2)的條件下,試比較與4的大小關(guān)系.

 

查看答案和解析>>

(本小題滿分14分)
已知數(shù)列滿足
(1)求;
(2)數(shù)列滿足,且
.證明當(dāng)時, ;
(3)在(2)的條件下,試比較與4的大小關(guān)系.

查看答案和解析>>

(本小題滿分14分)

已知數(shù)列滿足

(1)求

(2)數(shù)列滿足,且

.證明當(dāng)時, ;

(3)在(2)的條件下,試比較與4的大小關(guān)系.

 

查看答案和解析>>

 

1-15CBDAC CDB   0   5   100  [3.9]   垂直  2或8  

16.⑴ ∵ ,……………………………… 2分

又∵ ,∴ 為斜三角形,

,∴.   ……………………………………………………………… 4分

,∴ .  …………………………………………………… 6分

⑵∵,∴ …10分

,∵,∴.…………………………………12分

 

17.(Ⅰ)從4名運動員中任取兩名,其靶位號與參賽號相同,有種方法,另2名運動員靶位號與參賽號均不相同的方法有1種,所以恰有一名運動員所抽靶位號與參賽號相同的概率為  ……………………………4

   (Ⅱ)①由表可知,兩人各射擊一次,都未擊中9環(huán)的概率為P=(1-0.3)(1-0.32)=0.476至少有一人命中9環(huán)的概率為p=1-0.476=0.524………………………8分

   

所以2號射箭運動員的射箭水平高…………………………………12分

 

18.證明:(Ⅰ)在梯形ABCD中,∵,

∴四邊形ABCD是等腰梯形,

,∴

又∵平面平面ABCD,交線為AC,∴平面ACFE…………………6分

(Ⅱ)取EF中點G,EB中點H,連結(jié)DG、GH、DH,∵DE=DF,∴平面ACFE,∴  又∵,∴又∵,∴

是二面角B―EF―D的平面角.

在△BDE中

,∴在△DGH中,

由余弦定理得即二面角B―EF―D的大小余弦值...14分

 

 

19.解:(1)由橢圓定義可得,可得

  

,,解得   (4分)

(或解:以為直徑的圓必與橢圓有交點,即

   (2)由,得

解得    

    此時

當(dāng)且僅當(dāng)m=2時, (9分)

(3)由

設(shè)A,B兩點的坐標(biāo)分別為,中點Q的坐標(biāo)為

,兩式相減得

     ①

且在橢圓內(nèi)的部分

又由可知

    ②

①②兩式聯(lián)立可求得點Q的坐標(biāo)為

點Q必在橢圓內(nèi)

 又             (14分)

 

20.解:(1)

……………………………4分

(2)

由此猜測

下面證明:當(dāng)時,由

當(dāng)

當(dāng)時,

當(dāng)時,

總之在(-                (10分)

所以當(dāng)時,在(-1,0)上有唯一實數(shù)解,從而

上有唯一實數(shù)解。

綜上可知,.                 (14分)

 

21.解:(1)令

   令

   由①②得           (6分)

  (2)由(1)可得

n     

   

      ………………14

 

 


同步練習(xí)冊答案