【題目】一輛慢車從甲地勻速行駛至乙地,一輛快車同時從乙地出發(fā)勻速行駛至甲地,兩車之間的距離y(千米)與行駛時間x(小時)的對應關系如圖所示:下列結論:甲乙兩地相距600 千米;慢車的速度是60千米/小時;兩車相距300千米時,x=2;④慢車走400千米時快車已到達甲地.其中正確的是___________________ .(填寫所有正確結論的序號)

【答案】①②④

【解析】

根據(jù)題意和函數(shù)圖象可以分別判斷題目中的各個小題是否正確,從而可以解答本題.

由圖可得:

甲乙兩地相距600千米,故①正確,

慢車的速度是:600÷10=60(千米/小時),故②正確,

由題意可得當兩車相遇前相距300千米有個時刻,相遇后相遇300千米也有一個時刻,故③錯誤,

由圖可知,兩車4小時時相遇,則快車的速度為:600÷460=90(千米/小時),故快車到達甲地用的時間為:600÷90小時,此時慢車走的路程為:60400千米,故④正確.

故答案為:①②④.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面內(nèi)有一等腰RtABC,ACB=90°,點A在直線l上.過點CCE1于點E,過點BBFl于點F,測量得CE=3,BF=2,則AF的長為(  )

A. 5 B. 4 C. 8 D. 7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°,以AB為直徑的⊙OAC邊交于點D,過點D作⊙O的切線交BC于點E,連接OE

(1)證明OEAD;

(2)①當∠BAC=   °時,四邊形ODEB是正方形.

②當∠BAC=   °時,AD=3DE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCDBC中,∠ACB=∠DBC90°EBC的中點,EFAB,ABDE

1)求證:BCDB

2)若BD8cm,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校組織一項公益知識競賽,比賽規(guī)定:每個班級由2名男生、2名女生及1名班主任老師組成代表隊.但參賽時,每班只能有3名隊員上場參賽,班主任老師必須參加,另外2名隊員分別在2名男生和2名女生中各隨機抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任組成了代表隊,求恰好抽到由男生甲、女生丙和這位班主任一起上場參賽的概率.(請用畫樹狀圖列表列舉等方法給出分析過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做等高底三角形,這條邊叫做這個三角形的等底”.

(1)概念理解:

如圖1,在ABC中,AC=6,BC=3,ACB=30°,試判斷ABC是否是等高底三角形,請說明理由.

(2)問題探究:

如圖2,ABC等高底三角形,BC等底,作ABC關于BC所在直線的對稱圖形得到A'BC,連結AA′交直線BC于點D.若點BAA′C的重心,求的值.

(3)應用拓展:

如圖3,已知l1l2,l1l2之間的距離為2.“等高底ABC等底”BC在直線l1上,點A在直線l2上,有一邊的長是BC倍.將ABC繞點C按順時針方向旋轉45°得到A'B'C,A′C所在直線交l2于點D.求CD的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“十一”期間,包河區(qū)牛角大圩60畝的秋季花海是游客觀賞的首選景點,有著獨具一格的農(nóng)業(yè)風情,花海由矮牽牛、孔雀菊、藍花鼠尾草、一串紅等組成。為了種植“花海”,需要從甲乙兩地向大圩A.B兩個大棚配送營養(yǎng)土,已知甲地可調出50噸營養(yǎng)土,乙地可調出80噸營養(yǎng)土,A棚需70噸營養(yǎng)土,B棚需60噸營養(yǎng)土,甲乙兩地運往A.B兩棚的運費如下表所示(表中運費欄“元/噸”表示運送每噸營養(yǎng)土所需人民幣).

運費(元/噸)

A

B

甲地

12

12

乙地

10

8

(1)設甲地運往棚營養(yǎng)土噸,請用關于的代數(shù)式完成下表;

運往A.B兩地的噸數(shù)

A

B

甲地

乙地

___

___

(2)設甲地運往A棚營養(yǎng)土噸,求總運費 (元)關于 (噸)的函數(shù)關系式(要求寫出自變量取值范圍).

(3)當甲、乙兩地各運往A.B兩棚多少噸營養(yǎng)土時,總運費最省?最省的總運費是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市出租車計費辦法如圖所示.根據(jù)圖象信息,下列說法錯誤的是( 。

A. 出租車起步價是10

B. 3千米內(nèi)只收起步價

C. 超過3千米部分(x3)每千米收3

D. 超過3千米時(x3)所需費用yx之間的函數(shù)關系式是y=2x+4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長為 ,寬為 的大長方形被分割為 小塊,除陰影 , 外,其余 塊是形狀、大小完全相同的小長方形,其較短一邊長為

1)每個小長方形較長的一邊長是 (用含 的代數(shù)式表示).

2)分別用含 的代數(shù)式表示陰影 , 的面積,并計算陰影 A 的面積與陰影B的面積的差.

3)當 時,陰影 與陰影 的面積差會隨著 的變化而變化嗎?請你作出判斷,并說明理由.

查看答案和解析>>

同步練習冊答案