(1)求數(shù)列的通項公式. 查看更多

 

題目列表(包括答案和解析)





⑴求數(shù)列的通項公式;
⑵設(shè),若恒成立,求實數(shù)的取值范圍;
⑶是否存在以為首項,公比為的數(shù)列,使得數(shù)列中每一項都是數(shù)列中不同的項,若存在,求出所有滿足條件的數(shù)列的通項公式;若不存在,說明理由

查看答案和解析>>

求數(shù)列…的通項公式.

 

查看答案和解析>>

求數(shù)列…的通項公式.

 

查看答案和解析>>

求數(shù)列的通項公式:

1{an}中,a12,an13an2;

(2)  {an}中,a12,a25,且an23an12an0

 

查看答案和解析>>

求數(shù)列的通項公式,并求前n項和.

查看答案和解析>>

 

第Ⅰ卷(選擇題  共60分)

一、選擇題

<rt id="ql3tn"><del id="ql3tn"><td id="ql3tn"></td></del></rt>
<style id="ql3tn"></style>

20080422

第Ⅱ卷(非選擇題  共90分)

二、填空題

13.2    14.3   15.   16.①③④

三、解答題

17.解:(1)由正弦定理得,…………………………………….….3分

   ,因此!.6分

(2)的面積,………..8分

,所以由余弦定理得….10分

!.12分

文本框:  18.方法一:                

(1)證明:連結(jié)BD,

∵D分別是AC的中點,PA=PC=

∴PD⊥AC,

∵AC=2,AB=,BC=

∴AB2+BC2=AC2,

∴∠ABC=90°,即AB⊥BC.…………2分

∴BD=

∵PD2=PA2―AD2=3,PB

∴PD2+BD2=PB2,

∴PD⊥BD,

∵ACBD=D

∴PD⊥平面ABC.…………………………4分

(2)解:取AB的中點E,連結(jié)DE、PE,由E為AB的中點知DE//BC,

∵AB⊥BC,

∴AB⊥DE,

∵DE是直線PE的底面ABC上的射景

∴PE⊥AB

∴∠PED是二面角P―AB―C的平面角,……………………6分

在△PED中,DE=∠=90°,

∴tan∠PDE=

∴二面角P―AB―C的大小是

(3)解:設(shè)點E到平面PBC的距離為h.

∵VP―EBC=VE―PBC

……………………10分

在△PBC中,PB=PC=,BC=

而PD=

∴點E到平面PBC的距離為……………………12分

方法二:

(1)同方法一:

(2)解:解:取AB的中點E,連結(jié)DE、PE,

過點D作AB的平行線交BC于點F,以D為

DP為z軸,建立如圖所示的空間直角坐標(biāo)系.

則D(0,0,0),P(0,0,),

E(),B=(

設(shè)上平面PAB的一個法向量,

則由

這時,……………………6分

顯然,是平面ABC的一個法向量.

∴二面角P―AB―C的大小是……………………8分

(3)解:

設(shè)平面PBC的一個法向量,

是平面PBC的一個法向量……………………10分

∴點E到平面PBC的距離為………………12分

19.解:

20.解(1)由已知,拋物線,焦點F的坐標(biāo)為F(0,1)………………1分

當(dāng)l與y軸重合時,顯然符合條件,此時……………………3分

當(dāng)l不與y軸重合時,要使拋物線的焦點F與原點O到直線l的距離相等,當(dāng)且僅當(dāng)直線l通過點()設(shè)l的斜率為k,則直線l的方程為

由已知可得………5分

解得無意義.

因此,只有時,拋物線的焦點F與原點O到直線l的距離相等.……7分

(2)由已知可設(shè)直線l的方程為……………………8分

則AB所在直線為……………………9分

代入拋物線方程………………①

的中點為

代入直線l的方程得:………………10分

又∵對于①式有:

解得m>-1,

l在y軸上截距的取值范圍為(3,+)……………………12分

21.解:(1)在………………1分

當(dāng)兩式相減得:

整理得:……………………3分

當(dāng)時,,滿足上式,

(2)由(1)知

………………8分

……………………………………………12分

22.解:(1)…………………………1分

是R上的增函數(shù),故在R上恒成立,

在R上恒成立,……………………2分

…………3分

故函數(shù)上單調(diào)遞減,在(-1,1)上單調(diào)遞增,在(1,+)上單調(diào)遞減!5分

∴當(dāng)

的最小值………………6分

亦是R上的增函數(shù)。

故知a的取值范圍是……………………7分

(2)……………………8分

①當(dāng)a=0時,上單調(diào)遞增;…………10分

可知

②當(dāng)

即函數(shù)上單調(diào)遞增;………………12分

③當(dāng)時,有,

即函數(shù)上單調(diào)遞增!14分

 


同步練習(xí)冊答案