∵.∴≤0.∴不存在兩點使得在此兩點處的切線互相垂直.-------------------------------------------------------------------------------8 查看更多

 

題目列表(包括答案和解析)

7、9、10班同學做乙題,其他班同學任選一題,若兩題都做,則以較少得分計入總分.

(甲)已知f(x)=ax-ln(-x),x∈[-e,0),,其中e=2.718 28…是自然對數(shù)的底數(shù),a∈R.

(1)若a=-1,求f(x)的極值;

(2)求證:在(1)的條件下,;

(3)是否存在實數(shù)a,使f(x)的最小值是3,如果存在,求出a的值;如果不存在,說明理由.

(乙)定義在(0,+∞)上的函數(shù),其中e=2.718 28…是自然對數(shù)的底數(shù),a∈R.

   (1)若函數(shù)f(x)在點x=1處連續(xù),求a的值;

(2)若函數(shù)f(x)為(0,1)上的單調函數(shù),求實數(shù)a的取值范圍;并判斷此時函數(shù)f(x)在(0,+∞)上是否為單調函數(shù);

(3)當x∈(0,1)時,記g(x)=lnf(x)+x2ax. 試證明:對,當n≥2時,有

查看答案和解析>>

已知函數(shù)的圖象過坐標原點O,且在點處的切線的斜率是.

(Ⅰ)求實數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

【解析】第一問當時,,則。

依題意得:,即    解得

第二問當時,,令,結合導數(shù)和函數(shù)之間的關系得到單調性的判定,得到極值和最值

第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

不妨設,則,顯然

是以O為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

若方程(*)無解,不存在滿足題設要求的兩點P、Q.

(Ⅰ)當時,,則。

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當時,,令

變化時,的變化情況如下表:

0

0

+

0

單調遞減

極小值

單調遞增

極大值

單調遞減

,!上的最大值為2.

②當時, .當時, ,最大值為0;

時, 上單調遞增!最大值為。

綜上,當時,即時,在區(qū)間上的最大值為2;

時,即時,在區(qū)間上的最大值為。

(Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

不妨設,則,顯然

是以O為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

若方程(*)無解,不存在滿足題設要求的兩點P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時,

代入(*)式得:    即   (**)

 ,則

上單調遞增,  ∵     ∴,∴的取值范圍是。

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上

 

查看答案和解析>>


同步練習冊答案