②由①你得到的結(jié)論是:若函數(shù).存在.則在= 成立(用表示.只寫出結(jié)論.不必證明) 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)已知函數(shù)P(x1,f(x1)),Q(x2,f(x2))是f(x)圖象上的任意兩點(diǎn),且x1<x2

①求直線PQ的斜率kPQ的取值范圍及f(x)圖象上任一點(diǎn)切線的斜率k的取值范圍;

②由①你得到的結(jié)論是:若函數(shù)f(x)在[a,b]上有導(dǎo)函數(shù)(x),且f(a)、f(b)存在,則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得(ξ)=________成立(用a,b,f(a),f(b)表示,只寫出結(jié)論,不必證明)

(Ⅱ)設(shè)函數(shù)g(x)的導(dǎo)函數(shù)為(x),且(x)為單調(diào)遞減函數(shù),g(0)=0.試運(yùn)用你在②中得到的結(jié)論證明:當(dāng)x∈(0,1)時(shí),g(1)x<g(x).

查看答案和解析>>

已知函數(shù)f(x)=x4+ax3+bx2+c,其圖象在y軸上的截距為-5,在區(qū)間[0,1]上單調(diào)遞增,在[1,2]上單調(diào)遞減,又當(dāng)x=0,x=2時(shí)取得極小值.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)能否找到垂直于x軸的直線,使函數(shù)f(x)的圖象關(guān)于此直線對(duì)稱,并證明你的結(jié)論;
*(Ⅲ)設(shè)使關(guān)于x的方程f(x)=λ2x2-5恰有三個(gè)不同實(shí)根的實(shí)數(shù)λ的取值范圍為集合A,且兩個(gè)非零實(shí)根為x1、x2.試問(wèn):是否存在實(shí)數(shù)m,使得不等式m2+tm+2≤|x1-x2|對(duì)任意t∈[-3,3],λ∈A恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知函數(shù)f(x)=x4+ax3+bx2+c,其圖象在y軸上的截距為-5,在區(qū)間[0,1]上單調(diào)遞增,在[1,2]上單調(diào)遞減,又當(dāng)x=0,x=2時(shí)取得極小值.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)能否找到垂直于x軸的直線,使函數(shù)f(x)的圖象關(guān)于此直線對(duì)稱,并證明你的結(jié)論;
*(Ⅲ)設(shè)使關(guān)于x的方程f(x)=λ2x2-5恰有三個(gè)不同實(shí)根的實(shí)數(shù)λ的取值范圍為集合A,且兩個(gè)非零實(shí)根為x1、x2.試問(wèn):是否存在實(shí)數(shù)m,使得不等式m2+tm+2≤|x1-x2|對(duì)任意t∈[-3,3],λ∈A恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知函數(shù)f(x)=x4+ax3+bx2+c,其圖象在y軸上的截距為-5,在區(qū)間[0,1]上單調(diào)遞增,在[1,2]上單調(diào)遞減,又當(dāng)x=0,x=2時(shí)取得極小值.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)能否找到垂直于x軸的直線,使函數(shù)f(x)的圖象關(guān)于此直線對(duì)稱,并證明你的結(jié)論;
*(Ⅲ)設(shè)使關(guān)于x的方程f(x)=λ2x2-5恰有三個(gè)不同實(shí)根的實(shí)數(shù)λ的取值范圍為集合A,且兩個(gè)非零實(shí)根為x1、x2.試問(wèn):是否存在實(shí)數(shù)m,使得不等式m2+tm+2≤|x1-x2|對(duì)任意t∈[-3,3],λ∈A恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知函數(shù)f(x)=x4+ax3+bx2+c,其圖象在y軸上的截距為-5,在區(qū)間[0,1]上單調(diào)遞增,在[1,2]上單調(diào)遞減,又當(dāng)x=0,x=2時(shí)取得極小值.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)能否找到垂直于x軸的直線,使函數(shù)f(x)的圖象關(guān)于此直線對(duì)稱,并證明你的結(jié)論;
*(Ⅲ)設(shè)使關(guān)于x的方程f(x)=λ2x2-5恰有三個(gè)不同實(shí)根的實(shí)數(shù)λ的取值范圍為集合A,且兩個(gè)非零實(shí)根為x1、x2.試問(wèn):是否存在實(shí)數(shù)m,使得不等式m2+tm+2≤|x1-x2|對(duì)任意t∈[-3,3],λ∈A恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

 

一、選擇題

1―5 ADBAC    6―10 BCDCD    11―12 AB

二、填空題

13.24    14.24個(gè)    15.144     16.②

三、解答題

17.解:隨機(jī)猜對(duì)問(wèn)題A的概率p1,隨機(jī)猜對(duì)問(wèn)題B的概率p2.………1分

回答問(wèn)題的順序有兩種,分別討論如下:

   (1)先回答問(wèn)題A,再回答問(wèn)題B.

參與者獲獎(jiǎng)金額ξ可取0,m,m+n.,則

P(ξ=0)=1-p1,P(ξ=m)=p1(1-p2)=,P(ξ=m+n)=p1p2.

Eξ=0×+m×+(m+n)×.                   ………5分

   (2)先回答問(wèn)題B,再回答問(wèn)題A.

參與者獲獎(jiǎng)金額η可取0,n,m+n.,則

P(η=0)=1-p2,P(η=n)=p2(1-p1)=,P(η=m+n)=p2p1.

Eη=0×+n×+(m+n)×.                     ………9分

Eξ-Eη=()-()=

于是,當(dāng)時(shí),Eξ>Eη,先回答問(wèn)題A,再回答問(wèn)題B,獲獎(jiǎng)的期望值較大;

當(dāng)時(shí),Eξ=Eη,兩種順序獲獎(jiǎng)的期望值相等;

當(dāng)時(shí),Eξ<Eη,先回答問(wèn)題B,再回答問(wèn)題A,獲獎(jiǎng)的期望值較大. ………12分

18.解:(1)

  ………3分

∵角A為鈍角,

    ……………………………4分

取值最小值,

其最小值為……………………6分

   (2)由………………8分

,

…………10分

在△中,由正弦定理得:   ……12分

19.(Ⅰ)證法一:取的中點(diǎn)G,連結(jié)FG、AG,

依題意可知:GF是的中位線,

則  GF∥

AE∥,

所以GF∥AE,且GF=AE,即四邊形AEFG為平行四邊形,………3分

則EF∥AG,又AG平面,EF平面,

所以EF∥平面.                            ………6分

證法二:取DC的中點(diǎn)G,連結(jié)FG,GE.

,平面,∴FG∥平面.          

同理:∥平面,且,

∴平面EFG∥平面,                                    ………3分

平面,

∴EF∥平面.                                         ………6分

證法三:連結(jié)EC延長(zhǎng)交AD于K,連結(jié),E、F分別CK、CD1的中點(diǎn),

所以    FE∥D1K                          ………3分

∵FE∥D1K,平面,平面,∴EF∥平面.    ………6分

   (Ⅱ)解法一:⊥平面ABCD,過(guò)D在平面ABCD內(nèi)作DH⊥EC于H,連接D1H.

∵DH是D1H在平面ABCD內(nèi)的射影,∴D1H⊥EC.

∴∠DHD1為二面角的平面角。即∠DHD1=.         ………8分

在△DHD1中,tan∠DHD1=,∴,=,

,∴,∴,∴. ………12分

解法二:以D為原點(diǎn),AD、DC、DD1分別為x、y、z軸建立空間直角坐標(biāo)系。

D(0,0,0),D1(0,0,1),E(1,x,0)、C(0,2,0)。

平面DEC的法向量=(0,0,1),設(shè)為平面D1EC的法向量,

。  ………8分  

設(shè)二面角的大小為,∴cos=。

,∴<2,∴。           ………12分

20.解(Ⅰ)設(shè),,橢圓的方程為.

∵直線平行于向量

=(3,1)共線

.

。                                ………2分

又∵、在橢圓上,∴,

=-1,                       ………4分

,∴,∴.………6分

   (Ⅱ)設(shè),因?yàn)橹本AB過(guò),0),所以直線AB的方程為:,代入橢圓方程中得

,即

,                      ………8分

,

,

,

又因?yàn)?sub>,∴!10分

,

,即。

的軌跡方程.                  ………12分

21.解:(1)①直線PQ的斜率,

,所以

即直線PQ的斜率.                              …………2分

,又,所以,

圖象上任一點(diǎn)切線的斜率k的取值范圍為.     …………4分

.                                              …………6分

   (2)當(dāng),根據(jù)(1)中②的結(jié)論,得到存在,使得

,                  …………9分

為單調(diào)遞減函數(shù),所以,即

,而,所以

因?yàn)?sub>,所以x>0,  1-x>0

所以   .                               …………12分

22.證明:(Ⅰ)連接OD,∵OD=OA,∴∠OAD=∠ODA,

∵OC∥AD, ∴∠OAD=∠BOC, ∠DOC=∠ODA.

∴∠DOC=∠BOC,∵OD=OB,OC=OC,

∴△DOC≌△BOC. ∴∠ODC=∠OBC.                               …………2分

∵BC是⊙O的切線, ∴∠OBC=90°, ∴∠ODC=90°,

∴DC是⊙O的切線.                                           …………5分

   (Ⅱ)連接BD, ∵AB是⊙0的直徑, ∴∠ADB=90°,∴∠OBC=∠ADB.

∵∠OAD=∠BOC. ∴△ADB∽△OBC. ∴,

                                                      …………10分

23.解:(Ⅰ)的參數(shù)方程為,

。         …………5分

   (Ⅱ)由

可將,化簡(jiǎn)得。

將直線的參數(shù)方程代入圓方程得

,∴。  …………10分

24.證法一:∵,∴,又∵

                ………5分

。    ………10分

證法二:設(shè)=,∵,

當(dāng)時(shí),

當(dāng),<0,是單調(diào)遞減函數(shù),………5分

,∴,

==

==。

。          ………10分

 


同步練習(xí)冊(cè)答案