10.在正中.若點(diǎn)分別是的中點(diǎn).則以為焦點(diǎn).且過 的雙曲線的離心率為 查看更多

 

題目列表(包括答案和解析)

在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,若實數(shù)λ,μ滿足a+b=λc,ab=μc2,則稱數(shù)對(λ,μ)為△ABC的“Hold對”,現(xiàn)給出下列四個命題:
①若△ABC的“Hold對”為(2,1),則△ABC為正三角形;
②若△ABC的“Hold對”為,則△ABC為銳角三角形;
③若△ABC的“Hold對”為,則△ABC為鈍角三角形;
④若△ABC是以C為直角頂點(diǎn)的直角三角形,則以“Hold對”(λ,μ)為坐標(biāo)的點(diǎn)構(gòu)成的圖形是矩形,其面積為
其中正確的命題是    (填上所有正確命題的序號).

查看答案和解析>>

正方體ABCD-A1B1C1D1中,判斷下列命題是否正確,并請說明理由.

(1)直線AC1在平面CC1B1B內(nèi);

(2)設(shè)正方形ABCD與A1B1C1D1的中心分別為O、O1,則平面AA1C1C與平面BB1D1D的交線為OO1

(3)由點(diǎn)A、O、C可以確定一個平面;

(4)由A、C1、B1確定的平面是ADC1B1

(5)若直線l是平面AC內(nèi)的直線,直線m是平面D1C上的直線,若l與m相交,則交點(diǎn)一定在直線CD上;

(6)由A、C1、B1確定的平面與由A、C1、D確定的平面是同一平面.

查看答案和解析>>

△ABC的兩個頂點(diǎn)A、B的坐標(biāo)分別是(-a,0),(a,0)(a>0),邊AC、BC所在直線的斜率之積等于k.
①若k=-1,則△ABC是直角三角形;
②若k=1,則△ABC是直角三角形;
③若k=-2,則△ABC是銳角三角形;
④若k=2,則△ABC是銳角三角形.
以上四個命題中正確命題的序號是______.

查看答案和解析>>

△ABC的兩個頂點(diǎn)A、B的坐標(biāo)分別是(-a,0),(a,0)(a>0),邊AC、BC所在直線的斜率之積等于k.
①若k=-1,則△ABC是直角三角形;
②若k=1,則△ABC是直角三角形;
③若k=-2,則△ABC是銳角三角形;
④若k=2,則△ABC是銳角三角形.
以上四個命題中正確命題的序號是   

查看答案和解析>>

△ABC的兩個頂點(diǎn)A、B的坐標(biāo)分別是(-a,0),(a,0)(a>0),邊AC、BC所在直線的斜率之積等于k.
①若k=-1,則△ABC是直角三角形;
②若k=1,則△ABC是直角三角形;
③若k=-2,則△ABC是銳角三角形;
④若k=2,則△ABC是銳角三角形.
以上四個命題中正確命題的序號是   

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,滿分60分,在每小題給出的四個選項中,只有一項是符合題目要求的。

    1.C    2.C    3.C    4.C    5.A    6.D    7.A    8.A    9.B   

10.D   11.A   12.B

二、填空題:本大題4共小題,每小題5分。

   13.    14.    15.     16.①④

三、解答題(解答應(yīng)寫出文字說明,證明過程或演算步驟)

 

17.(I)

由余弦定理得

整理得得。

,故為直角三角形

(Ⅱ)設(shè)內(nèi)角對邊的邊長分別是

外接圓半徑為1,

周長的取值范圍

18.(I)證明:

(Ⅱ)解:設(shè)A

設(shè)點(diǎn)到平面的距離為,

(Ⅲ解:設(shè)軸建立空間直角坐標(biāo)宿,為計算方便,不妨設(shè)

要使二面角的大小為120°,則

即當(dāng)時,二面角的大小為120°

19.(I)記“廠家任意取出4件產(chǎn)品檢驗,其中至少有一件是合格品“為事件A,

(Ⅱ)的可能取值為0,1,2,

所以的概率分布為

 

 

0

1

2

 

 

 

 

 

 

20.(I)設(shè)

(Ⅱ)曲線向左平移1一個單位,得到曲線的方程為

(1)當(dāng)

(2)當(dāng)

(Ⅲ)

21.(I)

(Ⅱ)令,

(Ⅲ)用數(shù)學(xué)歸納法證明

請考生在第22、23、24題中任選一題做答,如果多做,則按所做的第一題記分,做答時,用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑。

 

22.

23.(I)為參數(shù),為傾斜角,且

(Ⅱ)

24.

   

 


同步練習(xí)冊答案