23.選修4―4,坐標(biāo)系與參數(shù)方程 查看更多

 

題目列表(包括答案和解析)

(本小題滿分10分)選修4-4;坐標(biāo)系與參數(shù)方程

已知在平面直角坐標(biāo)系內(nèi),點(diǎn) 在曲線C為參數(shù))上運(yùn)動.以為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(Ⅰ)寫出曲線C的標(biāo)準(zhǔn)方程和直線的直角坐標(biāo)方程;

(Ⅱ)若直線與曲線C相交于A、B兩點(diǎn),點(diǎn)M在曲線C上移動,試求面積的最大值.

 

查看答案和解析>>

(本小題滿分10分)

選修4-4:坐標(biāo)系與參數(shù)方程選講

已知曲線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)).

(1)若將曲線上各點(diǎn)的橫坐標(biāo)都縮短為原來的一半,分別得到曲線,求出曲線的普通方程;

(2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過極點(diǎn)且與垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

(本小題滿分10分)選修4—4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系下,已知圓O:和直線

(1)求圓O和直線的直角坐標(biāo)方程;

(2)當(dāng)時,求直線與圓O公共點(diǎn)的一個極坐標(biāo).

查看答案和解析>>

(本小題滿分10分)

選修4-4:坐標(biāo)系與參數(shù)方程選講

已知曲線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)).

(1)若將曲線上各點(diǎn)的橫坐標(biāo)都縮短為原來的一半,分別得到曲線,求出曲線的普通方程;

(2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過極點(diǎn)且與垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系xOy中,已知曲線,將上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的、2倍后得到曲線. 以平面直角坐標(biāo)系xOy的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線.

(Ⅰ)試寫出直線的直角坐標(biāo)方程和曲線的參數(shù)方程;

(Ⅱ)在曲線上求一點(diǎn)P,使點(diǎn)P到直線的距離最大,并求出此最大值.

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,滿分60分,在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。

    1.C    2.C    3.C    4.C    5.A    6.D    7.A    8.A    9.B   

10.D   11.A   12.B

二、填空題:本大題4共小題,每小題5分。

   13.    14.    15.     16.①④

三、解答題(解答應(yīng)寫出文字說明,證明過程或演算步驟)

 

17.(I)

由余弦定理得

整理得得。

,故為直角三角形

(Ⅱ)設(shè)內(nèi)角對邊的邊長分別是

外接圓半徑為1,

周長的取值范圍

18.(I)證明:

(Ⅱ)解:設(shè)A

設(shè)點(diǎn)到平面的距離為,

(Ⅲ解:設(shè)軸建立空間直角坐標(biāo)宿,為計算方便,不妨設(shè)

要使二面角的大小為120°,則

即當(dāng)時,二面角的大小為120°

19.(I)記“廠家任意取出4件產(chǎn)品檢驗(yàn),其中至少有一件是合格品“為事件A,

(Ⅱ)的可能取值為0,1,2,

所以的概率分布為

 

 

0

1

2

 

 

 

 

 

 

20.(I)設(shè)

(Ⅱ)曲線向左平移1一個單位,得到曲線的方程為

(1)當(dāng)

(2)當(dāng)

(Ⅲ)

21.(I)

(Ⅱ)令

(Ⅲ)用數(shù)學(xué)歸納法證明

請考生在第22、23、24題中任選一題做答,如果多做,則按所做的第一題記分,做答時,用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑。

 

22.

23.(I)為參數(shù),為傾斜角,且

(Ⅱ)

24.

   

 


同步練習(xí)冊答案