題目列表(包括答案和解析)
.如圖所示,質(zhì)量為m的物體,在水平力F的作用下,沿傾角為α的粗糙斜面向上做勻速運(yùn)動,斜面的動摩擦因數(shù)為μ,試求水平力的大小.
圖4-1-15
【解析】:對物體受力分析并建立坐標(biāo)系,如圖所示:
由題意可得
Fcosα-mgsinα-f=0
N-mgcosα-Fsinα=0
f=μN(yùn)
以上各式聯(lián)立解得F= mg.
.如圖所示,質(zhì)量為m的物體,在水平力F的作用下,沿傾角為α的粗糙斜面向上做勻速運(yùn)動,斜面的動摩擦因數(shù)為μ,試求水平力的大。
圖4-1-15
【解析】:對物體受力分析并建立坐標(biāo)系,如圖所示:
由題意可得
Fcosα-mgsinα-f=0
N-mgcosα-Fsinα=0
f=μN(yùn)
以上各式聯(lián)立解得F= mg.
第三部分 運(yùn)動學(xué)
第一講 基本知識介紹
一. 基本概念
1. 質(zhì)點(diǎn)
2. 參照物
3. 參照系——固連于參照物上的坐標(biāo)系(解題時(shí)要記住所選的是參照系,而不僅是一個(gè)點(diǎn))
4.絕對運(yùn)動,相對運(yùn)動,牽連運(yùn)動:v絕=v相+v牽
二.運(yùn)動的描述
1.位置:r=r(t)
2.位移:Δr=r(t+Δt)-r(t)
3.速度:v=limΔt→0Δr/Δt.在大學(xué)教材中表述為:v=dr/dt, 表示r對t 求導(dǎo)數(shù)
5.以上是運(yùn)動學(xué)中的基本物理量,也就是位移、位移的一階導(dǎo)數(shù)、位移的二階導(dǎo)數(shù)。可是
三階導(dǎo)數(shù)為什么不是呢?因?yàn)榕nD第二定律是F=ma,即直接和加速度相聯(lián)系。(a對t的導(dǎo)數(shù)叫“急動度”。)
6.由于以上三個(gè)量均為矢量,所以在運(yùn)算中用分量表示一般比較好
三.等加速運(yùn)動
v(t)=v0+at r(t)=r0+v0t+1/2 at2
一道經(jīng)典的物理問題:二次世界大戰(zhàn)中物理學(xué)家曾經(jīng)研究,當(dāng)大炮的位置固定,以同一速度v0沿各種角度發(fā)射,問:當(dāng)飛機(jī)在哪一區(qū)域飛行之外時(shí),不會有危險(xiǎn)?(注:結(jié)論是這一區(qū)域?yàn)橐粧佄锞,此拋物線是所有炮彈拋物線的包絡(luò)線。此拋物線為在大炮上方h=v2/2g處,以v0平拋物體的軌跡。)
練習(xí)題:
一盞燈掛在離地板高l2,天花板下面l1處。燈泡爆裂,所有碎片以同樣大小的速度v 朝各個(gè)方向飛去。求碎片落到地板上的半徑(認(rèn)為碎片和天花板的碰撞是完全彈性的,即切向速度不變,法向速度反向;碎片和地板的碰撞是完全非彈性的,即碰后靜止。)
四.剛體的平動和定軸轉(zhuǎn)動
1. 我們講過的圓周運(yùn)動是平動而不是轉(zhuǎn)動
2. 角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt
3. 有限的角位移是標(biāo)量,而極小的角位移是矢量
4. 同一剛體上兩點(diǎn)的相對速度和相對加速度
兩點(diǎn)的相對距離不變,相對運(yùn)動軌跡為圓弧,VA=VB+VAB,在AB連線上
投影:[VA]AB=[VB]AB,aA=aB+aAB,aAB=,anAB+,aτAB, ,aτAB垂直于AB,,anAB=VAB2/AB
例:A,B,C三質(zhì)點(diǎn)速度分別VA ,VB ,VC
求G的速度。
五.課后習(xí)題:
一只木筏離開河岸,初速度為V,方向垂直于岸邊,航行路線如圖。經(jīng)過時(shí)間T木筏劃到路線上標(biāo)有符號處。河水速度恒定U用作圖法找到在2T,3T,4T時(shí)刻木筏在航線上的確切位置。
五、處理問題的一般方法
(1)用微元法求解相關(guān)速度問題
例1:如圖所示,物體A置于水平面上,A前固定一滑輪B,高臺上有一定滑輪D,一根輕繩一端固定在C點(diǎn),再繞過B、D,BC段水平,當(dāng)以恒定水平速度v拉繩上的自由端時(shí),A沿水平面前進(jìn),求當(dāng)跨過B的兩段繩子的夾角為α?xí)r,A的運(yùn)動速度。
(vA=)
(2)拋體運(yùn)動問題的一般處理方法
(1)將斜上拋運(yùn)動分解為水平方向的勻速直線運(yùn)動和豎直方向的豎直上拋運(yùn)動
(2)將沿斜面和垂直于斜面方向作為x、y軸,分別分解初速度和加速度后用運(yùn)動學(xué)公式解題
(3)將斜拋運(yùn)動分解為沿初速度方向的斜向上的勻速直線運(yùn)動和自由落體運(yùn)動兩個(gè)分運(yùn)動,用矢量合成法則求解
例2:在擲鉛球時(shí),鉛球出手時(shí)距地面的高度為h,若出手時(shí)的速度為V0,求以何角度擲球時(shí),水平射程最遠(yuǎn)?最遠(yuǎn)射程為多少?
(α=、 x=)
第二講 運(yùn)動的合成與分解、相對運(yùn)動
(一)知識點(diǎn)點(diǎn)撥
參考系的轉(zhuǎn)換:動參考系,靜參考系
相對運(yùn)動:動點(diǎn)相對于動參考系的運(yùn)動
絕對運(yùn)動:動點(diǎn)相對于靜參考系統(tǒng)(通常指固定于地面的參考系)的運(yùn)動
牽連運(yùn)動:動參考系相對于靜參考系的運(yùn)動
(5)位移合成定理:SA對地=SA對B+SB對地
速度合成定理:V絕對=V相對+V牽連
加速度合成定理:a絕對=a相對+a牽連
(二)典型例題
(1)火車在雨中以30m/s的速度向南行駛,雨滴被風(fēng)吹向南方,在地球上靜止的觀察者測得雨滴的徑跡與豎直方向成21。角,而坐在火車?yán)锍丝涂吹接甑蔚膹桔E恰好豎直方向。求解雨滴相對于地的運(yùn)動。
提示:矢量關(guān)系入圖
答案:83.7m/s
(2)某人手拿一只停表,上了一次固定樓梯,又以不同方式上了兩趟自動扶梯,為什么他可以根據(jù)測得的數(shù)據(jù)來計(jì)算自動扶梯的臺階數(shù)?
提示:V人對梯=n1/t1
V梯對地=n/t2
V人對地=n/t3
V人對地= V人對梯+ V梯對地
答案:n=t2t3n1/(t2-t3)t1
(3)某人駕船從河岸A處出發(fā)橫渡,如果使船頭保持跟河岸垂直的方向航行,則經(jīng)10min后到達(dá)正對岸下游120m的C處,如果他使船逆向上游,保持跟河岸成а角的方向航行,則經(jīng)過12.5min恰好到達(dá)正對岸的B處,求河的寬度。
提示:120=V水*600
D=V船*600
答案:200m
(4)一船在河的正中航行,河寬l=100m,流速u=5m/s,并在距船s=150m的下游形成瀑布,為了使小船靠岸時(shí),不至于被沖進(jìn)瀑布中,船對水的最小速度為多少?
提示:如圖船航行
答案:1.58m/s
(三)同步練習(xí)
1.一輛汽車的正面玻璃一次安裝成與水平方向傾斜角為β1=30°,另一次安裝成傾角為β2=15°。問汽車兩次速度之比為多少時(shí),司機(jī)都是看見冰雹都是以豎直方向從車的正面玻璃上彈開?(冰雹相對地面是豎直下落的)
2、模型飛機(jī)以相對空氣v=39km/h的速度繞一個(gè)邊長2km的等邊三角形飛行,設(shè)風(fēng)速u = 21km/h ,方向與三角形的一邊平行并與飛機(jī)起飛方向相同,試求:飛機(jī)繞三角形一周需多少時(shí)間?
3.圖為從兩列蒸汽機(jī)車上冒出的兩股長幅氣霧拖尾的照片(俯視)。兩列車沿直軌道分別以速度v1=50km/h和v2=70km/h行駛,行駛方向如箭頭所示,求風(fēng)速。
4、細(xì)桿AB長L ,兩端分別約束在x 、 y軸上運(yùn)動,(1)試求桿上與A點(diǎn)相距aL(0< a <1)的P點(diǎn)運(yùn)動軌跡;(2)如果vA為已知,試求P點(diǎn)的x 、 y向分速度vPx和vPy對桿方位角θ的函數(shù)。
(四)同步練習(xí)提示與答案
1、提示:利用速度合成定理,作速度的矢量三角形。答案為:3。
2、提示:三角形各邊的方向?yàn)轱w機(jī)合速度的方向(而非機(jī)頭的指向);
第二段和第三段大小相同。
參見右圖,顯然:
v2 = + u2 - 2v合ucos120°
可解出 v合 = 24km/h 。
答案:0.2hour(或12min.)。
3、提示:方法與練習(xí)一類似。答案為:3
4、提示:(1)寫成參數(shù)方程后消參數(shù)θ。
(2)解法有講究:以A端為參照, 則桿上各點(diǎn)只繞A轉(zhuǎn)動。但鑒于桿子的實(shí)際運(yùn)動情形如右圖,應(yīng)有v牽 = vAcosθ,v轉(zhuǎn) = vA,可知B端相對A的轉(zhuǎn)動線速度為:v轉(zhuǎn) + vAsinθ= 。
P點(diǎn)的線速度必為 = v相
所以 vPx = v相cosθ+ vAx ,vPy = vAy - v相sinθ
答案:(1) + = 1 ,為橢圓;(2)vPx = avActgθ ,vPy =(1 - a)vA
第六部分 振動和波
第一講 基本知識介紹
《振動和波》的競賽考綱和高考要求有很大的不同,必須做一些相對詳細(xì)的補(bǔ)充。
一、簡諧運(yùn)動
1、簡諧運(yùn)動定義:= -k ①
凡是所受合力和位移滿足①式的質(zhì)點(diǎn),均可稱之為諧振子,如彈簧振子、小角度單擺等。
諧振子的加速度:= -
2、簡諧運(yùn)動的方程
回避高等數(shù)學(xué)工具,我們可以將簡諧運(yùn)動看成勻速圓周運(yùn)動在某一條直線上的投影運(yùn)動(以下均看在x方向的投影),圓周運(yùn)動的半徑即為簡諧運(yùn)動的振幅A 。
依據(jù):x = -mω2Acosθ= -mω2
對于一個(gè)給定的勻速圓周運(yùn)動,m、ω是恒定不變的,可以令:
mω2 = k
這樣,以上兩式就符合了簡諧運(yùn)動的定義式①。所以,x方向的位移、速度、加速度就是簡諧運(yùn)動的相關(guān)規(guī)律。從圖1不難得出——
位移方程: = Acos(ωt + φ) ②
速度方程: = -ωAsin(ωt +φ) ③
加速度方程:= -ω2A cos(ωt +φ) ④
相關(guān)名詞:(ωt +φ)稱相位,φ稱初相。
運(yùn)動學(xué)參量的相互關(guān)系:= -ω2
A =
tgφ= -
3、簡諧運(yùn)動的合成
a、同方向、同頻率振動合成。兩個(gè)振動x1 = A1cos(ωt +φ1)和x2 = A2cos(ωt +φ2) 合成,可令合振動x = Acos(ωt +φ) ,由于x = x1 + x2 ,解得
A = ,φ= arctg
顯然,當(dāng)φ2-φ1 = 2kπ時(shí)(k = 0,±1,±2,…),合振幅A最大,當(dāng)φ2-φ1 = (2k + 1)π時(shí)(k = 0,±1,±2,…),合振幅最小。
b、方向垂直、同頻率振動合成。當(dāng)質(zhì)點(diǎn)同時(shí)參與兩個(gè)垂直的振動x = A1cos(ωt + φ1)和y = A2cos(ωt + φ2)時(shí),這兩個(gè)振動方程事實(shí)上已經(jīng)構(gòu)成了質(zhì)點(diǎn)在二維空間運(yùn)動的軌跡參數(shù)方程,消去參數(shù)t后,得一般形式的軌跡方程為
+-2cos(φ2-φ1) = sin2(φ2-φ1)
顯然,當(dāng)φ2-φ1 = 2kπ時(shí)(k = 0,±1,±2,…),有y = x ,軌跡為直線,合運(yùn)動仍為簡諧運(yùn)動;
當(dāng)φ2-φ1 = (2k + 1)π時(shí)(k = 0,±1,±2,…),有+= 1 ,軌跡為橢圓,合運(yùn)動不再是簡諧運(yùn)動;
當(dāng)φ2-φ1取其它值,軌跡將更為復(fù)雜,稱“李薩如圖形”,不是簡諧運(yùn)動。
c、同方向、同振幅、頻率相近的振動合成。令x1 = Acos(ω1t + φ)和x2 = Acos(ω2t + φ) ,由于合運(yùn)動x = x1 + x2 ,得:x =(2Acost)cos(t +φ)。合運(yùn)動是振動,但不是簡諧運(yùn)動,稱為角頻率為的“拍”現(xiàn)象。
4、簡諧運(yùn)動的周期
由②式得:ω= ,而圓周運(yùn)動的角速度和簡諧運(yùn)動的角頻率是一致的,所以
T = 2π ⑤
5、簡諧運(yùn)動的能量
一個(gè)做簡諧運(yùn)動的振子的能量由動能和勢能構(gòu)成,即
= mv2 + kx2 = kA2
注意:振子的勢能是由(回復(fù)力系數(shù))k和(相對平衡位置位移)x決定的一個(gè)抽象的概念,而不是具體地指重力勢能或彈性勢能。當(dāng)我們計(jì)量了振子的抽象勢能后,其它的具體勢能不能再做重復(fù)計(jì)量。
6、阻尼振動、受迫振動和共振
和高考要求基本相同。
二、機(jī)械波
1、波的產(chǎn)生和傳播
產(chǎn)生的過程和條件;傳播的性質(zhì),相關(guān)參量(決定參量的物理因素)
2、機(jī)械波的描述
a、波動圖象。和振動圖象的聯(lián)系
b、波動方程
如果一列簡諧波沿x方向傳播,振源的振動方程為y = Acos(ωt + φ),波的傳播速度為v ,那么在離振源x處一個(gè)振動質(zhì)點(diǎn)的振動方程便是
y = Acos〔ωt + φ - ·2π〕= Acos〔ω(t - )+ φ〕
這個(gè)方程展示的是一個(gè)復(fù)變函數(shù)。對任意一個(gè)時(shí)刻t ,都有一個(gè)y(x)的正弦函數(shù),在x-y坐標(biāo)下可以描繪出一個(gè)瞬時(shí)波形。所以,稱y = Acos〔ω(t - )+ φ〕為波動方程。
3、波的干涉
a、波的疊加。幾列波在同一介質(zhì)種傳播時(shí),能獨(dú)立的維持它們的各自形態(tài)傳播,在相遇的區(qū)域則遵從矢量疊加(包括位移、速度和加速度的疊加)。
b、波的干涉。兩列波頻率相同、相位差恒定時(shí),在同一介質(zhì)中的疊加將形成一種特殊形態(tài):振動加強(qiáng)的區(qū)域和振動削弱的區(qū)域穩(wěn)定分布且彼此隔開。
我們可以用波程差的方法來討論干涉的定量規(guī)律。如圖2所示,我們用S1和S2表示兩個(gè)波源,P表示空間任意一點(diǎn)。
當(dāng)振源的振動方向相同時(shí),令振源S1的振動方程為y1 = A1cosωt ,振源S1的振動方程為y2 = A2cosωt ,則在空間P點(diǎn)(距S1為r1 ,距S2為r2),兩振源引起的分振動分別是
y1′= A1cos〔ω(t ? )〕
y2′= A2cos〔ω(t ? )〕
P點(diǎn)便出現(xiàn)兩個(gè)頻率相同、初相不同的振動疊加問題(φ1 = ,φ2 = ),且初相差Δφ= (r2 – r1)。根據(jù)前面已經(jīng)做過的討論,有
r2 ? r1 = kλ時(shí)(k = 0,±1,±2,…),P點(diǎn)振動加強(qiáng),振幅為A1 + A2 ;
r2 ? r1 =(2k ? 1)時(shí)(k = 0,±1,±2,…),P點(diǎn)振動削弱,振幅為│A1-A2│。
4、波的反射、折射和衍射
知識點(diǎn)和高考要求相同。
5、多普勒效應(yīng)
當(dāng)波源或者接受者相對與波的傳播介質(zhì)運(yùn)動時(shí),接收者會發(fā)現(xiàn)波的頻率發(fā)生變化。多普勒效應(yīng)的定量討論可以分為以下三種情況(在討論中注意:波源的發(fā)波頻率f和波相對介質(zhì)的傳播速度v是恒定不變的)——
a、只有接收者相對介質(zhì)運(yùn)動(如圖3所示)
設(shè)接收者以速度v1正對靜止的波源運(yùn)動。
如果接收者靜止在A點(diǎn),他單位時(shí)間接收的波的個(gè)數(shù)為f ,
當(dāng)他迎著波源運(yùn)動時(shí),設(shè)其在單位時(shí)間到達(dá)B點(diǎn),則= v1 ,、
在從A運(yùn)動到B的過程中,接收者事實(shí)上“提前”多接收到了n個(gè)波
n = = =
顯然,在單位時(shí)間內(nèi),接收者接收到的總的波的數(shù)目為:f + n = f ,這就是接收者發(fā)現(xiàn)的頻率f1 。即
f1 = f
顯然,如果v1背離波源運(yùn)動,只要將上式中的v1代入負(fù)值即可。如果v1的方向不是正對S ,只要將v1出正對的分量即可。
b、只有波源相對介質(zhì)運(yùn)動(如圖4所示)
設(shè)波源以速度v2正對靜止的接收者運(yùn)動。
如果波源S不動,在單位時(shí)間內(nèi),接收者在A點(diǎn)應(yīng)接收f個(gè)波,故S到A的距離:= fλ
在單位時(shí)間內(nèi),S運(yùn)動至S′,即= v2 。由于波源的運(yùn)動,事實(shí)造成了S到A的f個(gè)波被壓縮在了S′到A的空間里,波長將變短,新的波長
λ′= = = =
而每個(gè)波在介質(zhì)中的傳播速度仍為v ,故“被壓縮”的波(A接收到的波)的頻率變?yōu)?/p>
f2 = = f
當(dāng)v2背離接收者,或有一定夾角的討論,類似a情形。
c、當(dāng)接收者和波源均相對傳播介質(zhì)運(yùn)動
當(dāng)接收者正對波源以速度v1(相對介質(zhì)速度)運(yùn)動,波源也正對接收者以速度v2(相對介質(zhì)速度)運(yùn)動,我們的討論可以在b情形的過程上延續(xù)…
f3 = f2 = f
關(guān)于速度方向改變的問題,討論類似a情形。
6、聲波
a、樂音和噪音
b、聲音的三要素:音調(diào)、響度和音品
c、聲音的共鳴
第二講 重要模型與專題
一、簡諧運(yùn)動的證明與周期計(jì)算
物理情形:如圖5所示,將一粗細(xì)均勻、兩邊開口的U型管固定,其中裝有一定量的水銀,汞柱總長為L 。當(dāng)水銀受到一個(gè)初始的擾動后,開始在管中振動。忽略管壁對汞的阻力,試證明汞柱做簡諧運(yùn)動,并求其周期。
模型分析:對簡諧運(yùn)動的證明,只要以汞柱為對象,看它的回復(fù)力與位移關(guān)系是否滿足定義式①,值得注意的是,回復(fù)力系指振動方向上的合力(而非整體合力)。當(dāng)簡諧運(yùn)動被證明后,回復(fù)力系數(shù)k就有了,求周期就是順理成章的事。
本題中,可設(shè)汞柱兩端偏離平衡位置的瞬時(shí)位移為x 、水銀密度為ρ、U型管橫截面積為S ,則次瞬時(shí)的回復(fù)力
ΣF = ρg2xS = x
由于L、m為固定值,可令: = k ,而且ΣF與x的方向相反,故汞柱做簡諧運(yùn)動。
周期T = 2π= 2π
答:汞柱的周期為2π 。
學(xué)生活動:如圖6所示,兩個(gè)相同的柱形滾輪平行、登高、水平放置,繞各自的軸線等角速、反方向地轉(zhuǎn)動,在滾輪上覆蓋一塊均質(zhì)的木板。已知兩滾輪軸線的距離為L 、滾輪與木板之間的動摩擦因素為μ、木板的質(zhì)量為m ,且木板放置時(shí),重心不在兩滾輪的正中央。試證明木板做簡諧運(yùn)動,并求木板運(yùn)動的周期。
思路提示:找平衡位置(木板重心在兩滾輪中央處)→ú力矩平衡和Σ?F6= 0結(jié)合求兩處彈力→ú求摩擦力合力…
答案:木板運(yùn)動周期為2π 。
鞏固應(yīng)用:如圖7所示,三根長度均為L = 2.00m地質(zhì)量均勻直桿,構(gòu)成一正三角形框架ABC,C點(diǎn)懸掛在一光滑水平軸上,整個(gè)框架可繞轉(zhuǎn)軸轉(zhuǎn)動。桿AB是一導(dǎo)軌,一電動松鼠可在導(dǎo)軌上運(yùn)動,F(xiàn)觀察到松鼠正在導(dǎo)軌上運(yùn)動,而框架卻靜止不動,試討論松鼠的運(yùn)動是一種什么樣的運(yùn)動。
解說:由于框架靜止不動,松鼠在豎直方向必平衡,即:松鼠所受框架支持力等于松鼠重力。設(shè)松鼠的質(zhì)量為m ,即:
N = mg ①
再回到框架,其靜止平衡必滿足框架所受合力矩為零。以C點(diǎn)為轉(zhuǎn)軸,形成力矩的只有松鼠的壓力N、和松鼠可能加速的靜摩擦力f ,它們合力矩為零,即:
MN = Mf
現(xiàn)考查松鼠在框架上的某個(gè)一般位置(如圖7,設(shè)它在導(dǎo)軌方向上距C點(diǎn)為x),上式即成:
N·x = f·Lsin60° ②
解①②兩式可得:f = x ,且f的方向水平向左。
根據(jù)牛頓第三定律,這個(gè)力就是松鼠在導(dǎo)軌方向上的合力。如果我們以C在導(dǎo)軌上的投影點(diǎn)為參考點(diǎn),x就是松鼠的瞬時(shí)位移。再考慮到合力與位移的方向因素,松鼠的合力與位移滿足關(guān)系——
= -k
其中k = ,對于這個(gè)系統(tǒng)而言,k是固定不變的。
顯然這就是簡諧運(yùn)動的定義式。
答案:松鼠做簡諧運(yùn)動。
評說:這是第十三屆物理奧賽預(yù)賽試題,問法比較模糊。如果理解為定性求解,以上答案已經(jīng)足夠。但考慮到原題中還是有定量的條件,所以做進(jìn)一步的定量運(yùn)算也是有必要的。譬如,我們可以求出松鼠的運(yùn)動周期為:T = 2π = 2π = 2.64s 。
二、典型的簡諧運(yùn)動
1、彈簧振子
物理情形:如圖8所示,用彈性系數(shù)為k的輕質(zhì)彈簧連著一個(gè)質(zhì)量為m的小球,置于傾角為θ
如圖2所示,兩根平行的金屬導(dǎo)軌,固定在同一水平面上,磁感應(yīng)強(qiáng)度B=0.05 T的勻強(qiáng)磁場與導(dǎo)軌所在平面垂直(圖中未畫出),導(dǎo)軌的電阻很小,可忽略不計(jì).導(dǎo)軌間的距離l=0.20 m.兩根質(zhì)量均為m=0.10 kg的平行金屬桿甲、乙可在導(dǎo)軌上無摩擦地滑動,滑動過程中與導(dǎo)軌保持垂直,每根金屬桿的電阻均為R=0.50 Ω.在t=0時(shí)刻,兩桿都處于靜止?fàn)顟B(tài).現(xiàn)有一與導(dǎo)軌平行、大小為0.20 N的恒力F作用于金屬桿甲上,使金屬桿在導(dǎo)軌上滑動.經(jīng)過t=5.0 s,金屬桿甲的加速度為a=1.37 m/s2.問此時(shí)兩金屬桿的速度各為多少??
圖2
【解析】設(shè)t=5.0 s時(shí)兩金屬桿甲、乙之間的距離為x,速度分別為v1和v2,經(jīng)過很短的時(shí)間Δt,桿甲移動距離v1Δt,桿乙移動距離v2Δt,回路面積改變ΔS=[(x-v2Δt)+v1Δt]l-lx=(v1-v2)lΔt.由法拉第電磁感應(yīng)定律知,回路中的感應(yīng)電動勢回路中的電流
對桿甲由牛頓第二定律有F-BlI=ma
由于作用于桿甲和桿乙的安培力總是大小相等、方向相反,所以t=5.0 s時(shí)兩桿的動量(t=0時(shí)為0)等于外力F的沖量Ft=mv1+mv2
聯(lián)立以上各式解得
代入數(shù)據(jù)得v1=8.15 m/s,v2=1.85 m/s.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com