1若直線⊥平面.∥平面.則⊥, 2各側(cè)面都是正方形的棱柱一定是正棱柱, 3一個(gè)二面角的兩個(gè)半平面所在平面分別垂直于另一個(gè)二面角的兩個(gè)半平面所在平面.則這兩個(gè)二面角的平面角互為補(bǔ)角, 4過(guò)空間任意一點(diǎn)一定可以作一個(gè)和兩條異面直線都平行的平面. 其中正確的命題的個(gè)數(shù)有( ) A. 1 B. 2 C. 3 D. 4 查看更多

 

題目列表(包括答案和解析)

12、給定下列四個(gè)命題:
(1)給定空間中的直線l及平面α,“直線l與平面α內(nèi)無(wú)數(shù)條直線垂直”是“直線l與平面α垂直”的充分不必要條件;
(2)已知α,β表示兩個(gè)不同的平面,m為平面α內(nèi)的一條直線,則“α⊥β”是“m⊥β”的必要不充分條件;
(3)已知m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,若m∥α,n∥β,m⊥n,則α⊥β;
(4)在三棱柱ABC-A1B1C1中,各棱長(zhǎng)相等,側(cè)棱垂直于底面,點(diǎn)D是側(cè)面BB1C1C的中心,則AD與平面BB1C1C所成角的大小是60°.
上述命題中,真命題的序號(hào)是( 。

查看答案和解析>>

給定下列四個(gè)命題:
(1)給定空間中的直線l及平面α,“直線l與平面α內(nèi)無(wú)數(shù)條直線垂直”是“直線l與平面α垂直”的充分不必要條件;
(2)已知α,β表示兩個(gè)不同的平面,m為平面α內(nèi)的一條直線,則“α⊥β”是“m⊥β”的必要不充分條件;
(3)已知m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,若m∥α,n∥β,m⊥n,則α⊥β;
(4)在三棱柱ABC-A1B1C1中,各棱長(zhǎng)相等,側(cè)棱垂直于底面,點(diǎn)D是側(cè)面BB1C1C的中心,則AD與平面BB1C1C所成角的大小是60°.
上述命題中,真命題的序號(hào)是( )
A.(1)(2)
B.(2)(4)
C.(2)(3)(4)
D.(1)(2)(3)(4)

查看答案和解析>>

給定下列四個(gè)命題:
(1)給定空間中的直線l及平面α,“直線l與平面α內(nèi)無(wú)數(shù)條直線垂直”是“直線l與平面α垂直”的充分不必要條件;
(2)已知α,β表示兩個(gè)不同的平面,m為平面α內(nèi)的一條直線,則“α⊥β”是“m⊥β”的必要不充分條件;
(3)已知m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,若m∥α,n∥β,m⊥n,則α⊥β;
(4)在三棱柱ABC-A1B1C1中,各棱長(zhǎng)相等,側(cè)棱垂直于底面,點(diǎn)D是側(cè)面BB1C1C的中心,則AD與平面BB1C1C所成角的大小是60°.
上述命題中,真命題的序號(hào)是


  1. A.
    (1)(2)
  2. B.
    (2)(4)
  3. C.
    (2)(3)(4)
  4. D.
    (1)(2)(3)(4)

查看答案和解析>>

(08年新建二中六模) 給出下列四個(gè)命題:

①若直線l⊥平面α,l//平面β,則α⊥β;②各側(cè)面都是正方形的棱柱一定是正棱柱;③一個(gè)二面角的兩個(gè)半平面所在平面分別垂直于另一個(gè)二面角的兩個(gè)半平面所在平面,則這兩個(gè)二面角的平面角互為補(bǔ)角;④過(guò)空間任意一點(diǎn)一定可以作一個(gè)和兩個(gè)異面直線都平行的平面。其中正確的命題的個(gè)數(shù)有(     )

A.1            B. 2          C. 3           D. 4

查看答案和解析>>

給出下列四個(gè)命題:

(1)在空間中,垂直于同一條直線的兩條直線平行;

(2)平行于同一條直線的兩條直線平行;

(3)若一個(gè)圓柱的側(cè)面展開(kāi)圖是一個(gè)長(zhǎng)和寬分別為6和4的矩形,則這個(gè)圓柱的體積為

(4)把一個(gè)三棱柱的各個(gè)面伸展成平面,則可把空間分為21部分.

其中正確的命題個(gè)數(shù)為(    )

A.1                B.2                  C.3                  D.4

查看答案和解析>>

一、選擇題:

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

A

C

B

B

C

D

C

A

C

D

A

二、填空題:

13.           14.         15.     2個(gè)      16.       

三、解答題:

17.解:(1)

               ……………………3分

又         即 

                            …………………5分

(2)    

又  的充分條件        解得     ………12分

18.由題意知,在甲盒中放一球概率為時(shí),在乙盒中放一球的概率為  …2分

①當(dāng)時(shí),的概率為               ………4分

②當(dāng)時(shí),,又,所以的可能取值為0,2,4

(?)當(dāng)時(shí),有,,它的概率為    ………6分

(?)當(dāng) 時(shí),有 , ,

它的概率為

(?)當(dāng)時(shí),有

     它的概率為

的分布列為

  

0

2

4

P

 

 的數(shù)學(xué)期望        …………12分

19.解:(1) 連接 于點(diǎn)E,連接DE, ,

 四邊形 為矩形, 點(diǎn)E為 的中點(diǎn),

       平面                 ……………6分

(2)作于F,連接EF

,D為AB中點(diǎn),,

     EF為BE在平面內(nèi)的射影

為二面角的平面角.

設(shè)     

二面角的余弦值  ………12分

20.(1)據(jù)題意的

                        ………4分

                      ………5分

(2)由(1)得:當(dāng)時(shí),

    

     當(dāng)時(shí),,為增函數(shù)

    當(dāng)時(shí),為減函數(shù)

當(dāng)時(shí),      …………………………8分

當(dāng)時(shí),

當(dāng)時(shí),

當(dāng)時(shí),                   …………………………10分

綜上知:當(dāng)時(shí),總利潤(rùn)最大,最大值為195  ………………12分

21.解:(1)由橢圓定義可得,由可得

,而

解得                                   ……………………4分

(2)由,得,

解得(舍去)     此時(shí)

當(dāng)且僅當(dāng)時(shí),得最小值,

此時(shí)橢圓方程為         ………………………………………8分

(3)由知點(diǎn)Q是AB的中點(diǎn)

設(shè)A,B兩點(diǎn)的坐標(biāo)分別為,中點(diǎn)Q的坐標(biāo)為

,兩式相減得

      AB的中點(diǎn)Q的軌跡為直線

且在橢圓內(nèi)的部分

又由可知,所以直線NQ的斜率為,

方程為

①②兩式聯(lián)立可求得點(diǎn)Q的坐標(biāo)為

點(diǎn)Q必在橢圓內(nèi)          解得

              …………………………………12分

22.解:(1)由,得

,有

 

(2)證明:

為遞減數(shù)列

當(dāng)時(shí),取最大值          

由(1)中知     

綜上可知

(3)

欲證:即證

,構(gòu)造函數(shù)

當(dāng)時(shí),

函數(shù)內(nèi)遞減

內(nèi)的最大值為

當(dāng)時(shí),

       

不等式成立

 

 


同步練習(xí)冊(cè)答案