如圖, 在平面直角坐標(biāo)系中有一直角梯形OABC, ∠AOC=900, AB//OC, OC在x軸上, 過A.B.C三點(diǎn)的拋物線表達(dá)式為.(1)求A.B.C三點(diǎn)的坐標(biāo); (2)如果在梯形OABC內(nèi)有一矩形MNPO, 使M在x軸上, N在BC邊上, P在OC邊上, 當(dāng)MN為多少時(shí), 矩形MNPO的面積最大? 最大面積是多少? (3)若用一直線將梯形OABC分為面積相等的兩部分, 試說明你的方法. (注: 總結(jié)出一般規(guī)律得滿分, 若用特例說明, 有四種且正確也可得滿分) 查看更多

 

題目列表(包括答案和解析)

如圖,在平面直角坐標(biāo)系中,有一直角△ABC,且A(0,5),B(-5,2),C(0,2),并已知△AA1C1是由△ABC經(jīng)過旋轉(zhuǎn)變換得到的.

(1)問由△ABC旋轉(zhuǎn)得到的△AA1C1的旋轉(zhuǎn)角的度數(shù)是多少?并寫出旋轉(zhuǎn)中心的坐標(biāo);

(2)請(qǐng)你畫出仍以(1)中的旋轉(zhuǎn)中心為旋轉(zhuǎn)中心,將△AA1C1、△ABC分別按順時(shí)針、逆時(shí)針各旋轉(zhuǎn)90°的兩個(gè)三角形,并寫出變換后與A1相對(duì)應(yīng)點(diǎn)A2的坐標(biāo);

(3)利用變換前后所形成圖案證明勾股定理(設(shè)△ABC兩直角邊為、,斜邊為).

 

查看答案和解析>>

如圖,在平面直角坐標(biāo)系中,有一直角△ABC,且A(0,5),B(-5,2),C(0,2),并已知△AA1C1是由△ABC經(jīng)過旋轉(zhuǎn)變換得到的.

(1)問由△ABC旋轉(zhuǎn)得到的△AA1C1的旋轉(zhuǎn)角的度數(shù)是多少?并寫出旋轉(zhuǎn)中心的坐標(biāo);
(2)請(qǐng)你畫出仍以(1)中的旋轉(zhuǎn)中心為旋轉(zhuǎn)中心,將△AA1C1、△ABC分別按順時(shí)針、逆時(shí)針各旋轉(zhuǎn)90°的兩個(gè)三角形,并寫出變換后與A1相對(duì)應(yīng)點(diǎn)A2的坐標(biāo);
(3)利用變換前后所形成圖案證明勾股定理(設(shè)△ABC兩直角邊為,斜邊為).

查看答案和解析>>

如圖,在平面直角坐標(biāo)系中,有一直角△ABC,且A(0,5),B(-5,2),C(0,2),并已知△AA1C1是由△ABC經(jīng)過旋轉(zhuǎn)變換得到的.

(1)問由△ABC旋轉(zhuǎn)得到的△AA1C1的旋轉(zhuǎn)角的度數(shù)是多少?并寫出旋轉(zhuǎn)中心的坐標(biāo);
(2)請(qǐng)你畫出仍以(1)中的旋轉(zhuǎn)中心為旋轉(zhuǎn)中心,將△AA1C1、△ABC分別按順時(shí)針、逆時(shí)針各旋轉(zhuǎn)90°的兩個(gè)三角形,并寫出變換后與A1相對(duì)應(yīng)點(diǎn)A2的坐標(biāo);
(3)利用變換前后所形成圖案證明勾股定理(設(shè)△ABC兩直角邊為,斜邊為).

查看答案和解析>>

如圖,在平面直角坐標(biāo)系中,有一直角△ABC,且A(0,5),B(-5,2),C(0,2),并已知△AA1C1是由△ABC經(jīng)過旋轉(zhuǎn)變換得到的.

(1)問由△ABC旋轉(zhuǎn)得到的△AA1C1的旋轉(zhuǎn)角的度數(shù)是多少?并寫出旋轉(zhuǎn)中心的坐標(biāo);

(2)請(qǐng)你畫出仍以(1)中的旋轉(zhuǎn)中心為旋轉(zhuǎn)中心,將△AA1C1、△ABC分別按順時(shí)針、逆時(shí)針各旋轉(zhuǎn)90°的兩個(gè)三角形,并寫出變換后與A1相對(duì)應(yīng)點(diǎn)A2的坐標(biāo);

(3)利用變換前后所形成圖案證明勾股定理(設(shè)△ABC兩直角邊為,斜邊為).

 

查看答案和解析>>

如圖,在平面直角坐標(biāo)系中,有一直角△ABC,且A(0,5),B(-5,2),C(0,2),并已知△AA1C1是由△ABC經(jīng)過旋轉(zhuǎn)變換得到的.

(1)問由△ABC旋轉(zhuǎn)得到的△AA1C1的旋轉(zhuǎn)角的度數(shù)是多少?并寫出旋轉(zhuǎn)中心的坐標(biāo);
(2)請(qǐng)你畫出仍以(1)中的旋轉(zhuǎn)中心為旋轉(zhuǎn)中心,將△AA1C1、△ABC分別按順時(shí)針、逆時(shí)針各旋轉(zhuǎn)90°的兩個(gè)三角形,并寫出變換后與A1相對(duì)應(yīng)點(diǎn)A2的坐標(biāo);
(3)利用變換前后所形成圖案證明勾股定理(設(shè)△ABC兩直角邊為,斜邊為).

查看答案和解析>>


同步練習(xí)冊(cè)答案