(2)如圖2.若P點(diǎn)為拋物線上不同于A的一點(diǎn).連結(jié)PB并延長交拋物線于點(diǎn)Q.過點(diǎn)P.Q分別作軸的垂線.垂足分別為S.R.①求證:PB=PS,②判斷△SBR的形狀,③試探索在線段SR上是否存在點(diǎn)M.使得以點(diǎn)P.S.M為頂點(diǎn)的三角形和以點(diǎn)Q.R.M為頂點(diǎn)的三角形相似.若存在.求出M點(diǎn)坐標(biāo),若不存在.請說明理由. 查看更多

 

題目列表(包括答案和解析)

如圖,在直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(-3,0)、(0,3).
(1)一次函數(shù)圖象上的兩點(diǎn)P、Q在直線AB的同側(cè),且直線PQ與y軸交點(diǎn)的縱坐標(biāo)大于3,若△PAB與△QAB的面積都等于3,求這個一次函數(shù)的解析式;
(2)二次函數(shù)的圖象經(jīng)過點(diǎn)A、B,其頂點(diǎn)C在x軸的上方且在直線PQ上,求這個二次函數(shù)的解析式;
(3)若使(2)中所確定的拋物線的開口方向不變,頂點(diǎn)C在直線PQ上運(yùn)動,當(dāng)點(diǎn)C運(yùn)動到點(diǎn)精英家教網(wǎng)C′時,拋物線在x軸上截得的線段長為6,求點(diǎn)C′的坐標(biāo).

查看答案和解析>>

如圖,直線y=hx+d與x軸和y軸分別相交于點(diǎn)A(-1,0),B(0,1),與雙曲線y=
t
x
在第一象限相交于點(diǎn)C;以AC為斜邊、∠CAO為內(nèi)角的直角三角形,與以CO為對角線、一邊在x軸上的矩形面積相等;點(diǎn)C,P在以B為頂點(diǎn)的拋物線y=mx2+nx+k上;直線y=精英家教網(wǎng)hx+d、雙曲線y=
t
x
和拋物線y=ax2+bx+c同時經(jīng)過兩個不同的點(diǎn)C,D.
(1)確定t的值;
(2)確定m,n,k的值;
(3)若無論a,b,c取何值,拋物線y=ax2+bx+c都不經(jīng)過點(diǎn)P,請確定P的坐標(biāo).

查看答案和解析>>

如圖,拋物線y1=ax2-2ax+b經(jīng)過A(-1,0),C(0,
3
2
)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求此拋物線的解析式;
(2)若拋物線的頂點(diǎn)為M,點(diǎn)P為線段OB上一動點(diǎn)(不與點(diǎn)B重合),點(diǎn)Q在線段MB上移動,且∠MPQ=45°,設(shè)線段OP=x,MQ=
2
2
y2,求y2與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(3)在同一平面直角坐標(biāo)系中,兩條直線x=m,x=n分別與拋物線交于點(diǎn)E、G,與(2)中的函數(shù)圖象交于點(diǎn)F、H.問四邊形EFHG能否成為平行四邊形?若能,求m、n之間的數(shù)量關(guān)系;若不能,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

如圖,已知P、A、B是x軸上的三點(diǎn),點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B的坐標(biāo)為(3,0),且PA:AB=1:2,以AB為直徑畫⊙M交y軸的正半軸于點(diǎn)C.
(1)求證:PC是⊙M的切線;
(2)在x軸上是否存在這樣的點(diǎn)Q,使得直線QC與過A、C、B三點(diǎn)的拋物線只有一個交點(diǎn)?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請說明理由;
(3)畫⊙N,使得圓心N在x軸的負(fù)半軸上,⊙N與⊙M外切、且與直線PC精英家教網(wǎng)相切于D.問將過A、C、B三點(diǎn)的拋物線平移后能否同時經(jīng)過P、D、A三點(diǎn),為什么?

查看答案和解析>>

如圖,二次函數(shù)y=-
1
36
ax2+
1
4
ax+a
(a>0)的圖象與y軸交于點(diǎn)A,與x軸交于點(diǎn)B、C,過A點(diǎn)作x軸的平行線交拋物線于另一點(diǎn)D,線段OC上有一動點(diǎn)P,連接DP,作PE⊥DP,交y軸于點(diǎn)E.問題:精英家教網(wǎng)
(1)當(dāng)a變化時,線段AD的長是否變化?若變化,請說明理由;若不變,請求出AD的長;
(2)若a為定值,設(shè)OP=x,OE=y,試求y關(guān)于x的函數(shù)關(guān)系式;
(3)若在線段OC上存在不同的兩點(diǎn)P1、P2使相應(yīng)的點(diǎn)E1、E2都與點(diǎn)A重合,試求a的取值范圍.

查看答案和解析>>


同步練習(xí)冊答案