如圖(1).正△ABC和正△FDE.F與B重合.AB與FD在一條直線上.(1) 若將△FDE繞點B旋轉(zhuǎn)一定角度.試說明CD = AE, 查看更多

 

題目列表(包括答案和解析)

如圖1,正△ABC和正△FDE,F(xiàn)與B重合,AB與FD在一條直線上.
(1)若將△FDE繞點B旋轉(zhuǎn)一定角度(如圖2),試說明CD=AE;
(2)已知AB=6,DE=數(shù)學(xué)公式,把圖1中的△FDE繞點B逆時針方向旋轉(zhuǎn)90°(如圖3),試判斷四邊形EBDC的形狀,并說明你的理由;
(3)若把圖1中的正△FDE沿BA方向平移(如圖4),連接AE、BE,已知正△ABC和正△FDE的邊長分別是5cm和數(shù)學(xué)公式cm,問在平移過程中,△ABE是否會成為等腰三角形?若能,直接寫出FB的值;若不能,說明理由.   

查看答案和解析>>

如圖1,正△ABC和正△FDE,F(xiàn)與B重合,AB與FD在一條直線上.
(1)若將△FDE繞點B旋轉(zhuǎn)一定角度(如圖2),試說明CD=AE;
(2)已知AB=6,DE=,把圖1中的△FDE繞點B逆時針方向旋轉(zhuǎn)90°(如圖3),試判斷四邊形EBDC的形狀,并說明你的理由;
(3)若把圖1中的正△FDE沿BA方向平移(如圖4),連接AE、BE,已知正△ABC和正△FDE的邊長分別是5cm和cm,問在平移過程中,△ABE是否會成為等腰三角形?若能,直接寫出FB的值;若不能,說明理由.       

查看答案和解析>>

如圖1,正△ABC和正△FDE,F(xiàn)與B重合,AB與FD在一條直線上.

(1)若將△FDE繞點B旋轉(zhuǎn)一定角度(如圖2),試說明CD=AE;

(2)已知AB=6,DE=,把圖(1)中的△FDE繞點B逆時針方向旋轉(zhuǎn)90°(如圖3),試判斷四邊形EBDC的形狀,并說明你的理由;

(3)若把圖(1)中的正△FDE沿BA方向平移(如圖4),連結(jié)AE、BE,已知正△ABC和正△FDE的邊長分別是5 cm和 cm,問在平移過程中,△ABE是否會成為等腰三角形?若能,直接寫出FB的值;若不能,說明理由.

查看答案和解析>>

問題情境:將一副直角三角板(Rt△ABC和Rt△DEF)按圖1所示的方式擺放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中點,點D與點O重合,DF⊥AC于點M,DE⊥BC于點N,試判斷線段OM與ON的數(shù)量關(guān)系,并說明理由
探究展示:小宇同學(xué)展示出如下正確的解法:
解:OM=ON,
證明如下:連接CO,則CO是AB邊上中線,
∵CA=CB,
∴CO是∠ACB的角平分線(依據(jù)1)
∵OM⊥AC,ON⊥BC,
∴OM=ON(依據(jù)2)反思交流:
(1)上述證明過程中的“依據(jù)1”和“依據(jù)2”分別是指:
依據(jù)1:                                                                                    
依據(jù)2:                                                                                     
(2)你有與小宇不同的思考方法嗎?請寫出你的證明過程.
拓展延伸:
(3)將圖1中的Rt△DEF沿著射線BA的方向平移至如圖2所示的位置,使點D落在BA的延長線上,F(xiàn)D的延長線與CA的延長線垂直相交于點M,BC的延長線與DE垂直相交于點N,連接OM、ON,試判斷線段OM、ON的數(shù)量關(guān)系與位置關(guān)系,并寫出證明過程.

查看答案和解析>>

如圖1,正△ABC和正△FDE,F(xiàn)與B重合,AB與FD在一條直線上.
(1)若將△FDE繞點B旋轉(zhuǎn)一定角度(如圖2),試說明CD=AE;
(2)已知AB=6,DE=2
3
,把圖1中的△FDE繞點B逆時針方向旋轉(zhuǎn)90°(如圖3),試判斷四邊形EBDC的形狀,并說明你的理由;
(3)若把圖1中的正△FDE沿BA方向平移(如圖4),連接AE、BE,已知正△ABC和正△FDE的邊長分別是5cm和2
3
cm,問在平移過程中,△ABE是否會成為等腰三角形?若能,直接寫出FB的值;若不能,說明理由.       精英家教網(wǎng)

查看答案和解析>>


同步練習(xí)冊答案