圖1(1)如圖2.在Rt△ABC中.∠BAC=90°.AB>AC.點D是BC邊中點.過D作射線交AB于E.交CA延長線于F.請猜想∠F等于多少度時.BE=CF(直接寫出結果.不必證明). 查看更多

 

題目列表(包括答案和解析)

如圖1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點D在邊AB上運動,DE平分∠CDB交邊BC于點E,EM⊥BD垂足為M,EN⊥CD垂足為N.
精英家教網
(1)當AD=CD時,求證:DE∥AC;
(2)探究:AD為何值時,△BME與△CNE相似?
(3)探究:AD為何值時,四邊形MEND與△BDE的面積相等?

查看答案和解析>>

精英家教網如圖1,在Rt△ABC中,∠C=90°,BC=8厘米,點D在AC上,CD=3厘米.點P、Q分別由A、C兩點同時出發(fā),點P沿AC方向向點C勻速移動,速度為每秒k厘米,行完AC全程用時8秒;點Q沿CB方向向點B勻速移動,速度為每秒1厘米.設運動的時間為x秒(0<x<8),△DCQ的面積為y1平方厘米,△PCQ的面積為y2平方厘米.
(1)求y1與x的函數關系,并在圖2中畫出y1的圖象;
(2)如圖2,y2的圖象是拋物線的一部分,其頂點坐標是(4,12),求點P的速度及AC的長;
(3)在圖2中,點G是x軸正半軸上一點0<OG<6,過G作EF垂直于x軸,分別交y1、y2的圖象于點E、F.
①說出線段EF的長在圖1中所表示的實際意義;
②當0<x<6時,求線段EF長的最大值.

查看答案和解析>>

如圖1,在平面直角坐標系中,拋物線y=
1
4
x2-6
與直線y=
1
2
x
相交于A,B兩點.
(1)求線段AB的長;
(2)若一個扇形的周長等于(1)中線段AB的長,當扇形的半徑取何值時,扇形的面積最大,最大面積是多少;
(3)如圖2,線段AB的垂直平分線分別交x軸、y軸于C,D兩點,垂足為點M,分別求出OM,OC,OD的長,并驗證等式
1
OC2
+
1
OD2
=
1
OM2
是否成立;
(4)如圖3,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,設BC=a,AC=b,AB=c.CD=b,試說明:
1
a2
+
1
b2
=
1
h2

精英家教網

查看答案和解析>>

(2011•錦州一模)如圖1,在Rt△ABC中,∠ACB=90°,∠A=30°,P為BC邊上任意一點,點Q為AC邊動點,分別以CP、PQ為邊做等邊△PCF和等邊△PQE,連接EF.
(1)試探索EF與AB位置關系,并證明;
(2)如圖2,當點P為BC延長線上任意一點時,(1)結論是否成立?請說明理由.
(3)如圖3,在Rt△ABC中,∠ACB=90°,∠A=m°,P為BC延長線上一點,點Q為AC邊動點,分別以CP、PQ為腰做等腰△PCF和等腰△PQE,使得PC=PF,PQ=PE,連接EF.要使(1)的結論依然成立,則需要添加怎樣的條件?為什么?

查看答案和解析>>

如圖1是著名的趙爽弦圖,由四個全等的直角三角形拼成,用它可以證明勾股定理,思路是:大正方形的面積有兩種求法,一種是等于c2,另一種是等于四個直角三角形與一個小正方形的面積之和,即
1
2
ab×4+(b-a)2
,從而得到等式c2=
1
2
ab×4+(b-a)2
,化簡便得結論a2+b2=c2.這里用兩種求法來表示同一個量從而得到等式或方程的方法,我們稱之為“雙求法”.現在,請你用“雙求法”解決下面兩個問題
(1)如圖2,在Rt△ABC中,∠ACB=90°,CD是AB邊上的高,AC=3,BC=4,求CD的長度.
(2)如圖3,在△ABC中,AD是BC邊上的高,AB=4,AC=5,BC=6,設BD=x,求x的值.精英家教網

查看答案和解析>>


同步練習冊答案