14.如果△ABC中.∠A.∠B.∠C所對(duì)的邊分別為a.b.c.△ABC的外接圓半徑為R.那么有關(guān)系式成立.并被稱作正弦定理.請(qǐng)利用正弦定理直接求解下面問題:已知△MNP的外接圓直徑為8.∠P=.那么MN= 查看更多

 

題目列表(包括答案和解析)

如果△ABC中,∠A、∠B、∠C所對(duì)的邊分別為a、b、c,△ABC的外接圓半徑為R,那么有關(guān)系式成立,并被稱作正弦定理,請(qǐng)利用正弦定理直接求解下面問題:已知△MNP的外接圓直徑為8,∠P=,那么MN=________ 

查看答案和解析>>

28、如果一條直線把一個(gè)平面圖形的面積分成相等的兩部分,我們把這條直線稱為這個(gè)平面圖形的一條面積等分線,例如平行四邊形的一條對(duì)角線所在的直線就是平行四邊形的一條面積等分線.
(1)三角形的中線、高線、角平分線分別所在的直線一定是三角形的面積等分線的有
三角形的中線所在的直線

(2)如圖,梯形ABCD中,AB∥DC,如果延長(zhǎng)DC到E,使CE=AB,連接AE,那么有S梯形ABCD=S△ADE.請(qǐng)你給出這個(gè)結(jié)論成立的理由,并過點(diǎn)A作出梯形ABCD的面積等分線(不寫作法,保留作圖痕跡);
(3)如圖,四邊形ABCD中,AB與CD不平行,S△ADC>S△ABC,過點(diǎn)A能否作出四邊形ABCD的面積等分線?若能,請(qǐng)畫出面積等分線,并給出證明;若不能,說明理由.

查看答案和解析>>

在△ABC中,∠A、∠B、∠C所對(duì)的邊分別用a、b、c表示.
(1)如圖,在△ABC中,∠A=2∠B,且∠A=60度.求證:a2=b(b+c).
精英家教網(wǎng)
(2)如果一個(gè)三角形的一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的2倍,我們稱這樣的三角形為“倍角三角形”.第一問中的三角形是一個(gè)特殊的倍角三角形,那么對(duì)于任意的倍角三角形ABC,其中∠A=2∠B,關(guān)系式a2=b(b+c)是否仍然成立?并證明你的結(jié)論.
精英家教網(wǎng)
(3)試求出一個(gè)倍角三角形的三條邊的長(zhǎng),使這三條邊長(zhǎng)恰為三個(gè)連續(xù)的正整數(shù).

查看答案和解析>>

如果一條直線把一個(gè)平面圖形的面積分成相等的兩部分,我們把這條直線稱為這個(gè)平面圖形的一條面積等分線.如,平行四邊形的一條對(duì)角線所在的直線就是平行四邊形的一條面積等分線.
(1)三角形的中線、高線、角平分線分別所在的直線一定是三角形的面積等分線的是_______;
(2)如圖1,梯形ABCD中,ABDC,如果延長(zhǎng)DCE,使CEAB,連接AE,那么有S梯形ABCD SADE.請(qǐng)你給出這個(gè)結(jié)論成立的理由,并過點(diǎn)A作出梯形ABCD的面積等分線(不寫作法,保留作圖痕跡);
(3)如圖2,四邊形ABCD中,ABCD不平行,SADCSABC,過點(diǎn)A能否作出四邊形ABCD的面積等分線?若能,請(qǐng)畫出面積等分線,并給出說明;若不能,說明理由.

查看答案和解析>>

如果一條直線把一個(gè)平面圖形的面積分成相等的兩部分,我們把這條直線稱為這個(gè)平面圖形的一條面積等分線.如,平行四邊形的一條對(duì)角線所在的直線就是平行四邊形的一條面積等分線.

(1)三角形的中線、高線、角平分線分別所在的直線一定是三角形的面積等分線的是_______;

(2)如圖1,梯形ABCD中,ABDC,如果延長(zhǎng)DCE,使CEAB,連接AE,那么有S梯形ABCD SADE.請(qǐng)你給出這個(gè)結(jié)論成立的理由,并過點(diǎn)A作出梯形ABCD的面積等分線(不寫作法,保留作圖痕跡);

(3)如圖2,四邊形ABCD中,ABCD不平行,SADCSABC,過點(diǎn)A能否作出四邊形ABCD的面積等分線?若能,請(qǐng)畫出面積等分線,并給出說明;若不能,說明理由.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案