已知拋物線
y=-x2+2kx-k2+2k-2(k是實(shí)數(shù))與x軸有交點(diǎn),將此拋物線
向左平移1個(gè)單位,再向上平移4個(gè)單位,得到新的拋物線E,設(shè)拋物線E與x軸的交點(diǎn)為B,C,如圖.
(1)求拋物線E所對應(yīng)的函數(shù)關(guān)系式,并求出頂點(diǎn)A的坐標(biāo);
(2)連接AB,把AB所在的直線平移,使它經(jīng)過點(diǎn)C,得到直線l,點(diǎn)P是l上一動(dòng)點(diǎn)(與點(diǎn)C不重合).設(shè)以點(diǎn)A,B,C,P為頂點(diǎn)的四邊形面積為S,點(diǎn)P的橫坐標(biāo)為t,當(dāng)0<S≤16時(shí),求t的取值范圍;
(3)點(diǎn)Q是直線l上的另一個(gè)動(dòng)點(diǎn),以點(diǎn)Q為圓心,R為半徑作圓Q,當(dāng)R取何值時(shí),圓Q與直線AB相切?相交?相離?直接給出結(jié)果.