20.如圖.矩形ABCD中.O是AC與BD的交點.過O點的直線EF與AB.CD的延長線分別交于點E.F.(1)求證:△BOE≌△DOF,(2)連接EC.AF.當EF與AC滿足什么條件時.四邊形AECF為菱形.并說明理由. 查看更多

 

題目列表(包括答案和解析)

 (本小題滿分12分)

如圖,在平面直角坐標系xoy中,矩形ABCD的邊AB在x軸上,且AB=3,BC=,直線y=經過點C,交y軸于點G。

1.(1)點C、D的坐標分別是C(        ),D(       );

2.(2)求頂點在直線y=上且經過點C、D的拋物

線的解析式;

3.(3)將(2)中的拋物線沿直線y=平移,平移后   

的拋物線交y軸于點F,頂點為點E(頂點在y軸右側)。

平移后是否存在這樣的拋物線,使⊿EFG為等腰三角形?

若存在,請求出此時拋物線的解析式;若不存在,請說

明理由。

 

查看答案和解析>>

(本小題滿分10分)

如圖1,正方形ABCD和正方形QMNP,∠M =∠B,M是正方形ABCD的對稱中心,MN交AB于F,QM交AD于E.

⑴求證:ME = MF.

⑵如圖2,若將原題中的“正方形”改為“菱形”,其他條件不變,探索線段ME與線段MF的關系,并加以證明.

⑶如圖3,若將原題中的“正方形”改為“矩形”,且AB = mBC,其他條件不變,探索線段ME與線段MF的關系,并說明理由.

⑷根據前面的探索和圖4,你能否將本題推廣到一般的平行四邊形情況?若能,寫出推廣命題;若不能,請說明理由.

 

查看答案和解析>>

(本小題滿分12分)
如圖,在平面直角坐標系xoy中,矩形ABCD的邊AB在x軸上,且AB=3,BC=,直線y=經過點C,交y軸于點G。

【小題1】(1)點C、D的坐標分別是C(       ),D(       );
【小題2】(2)求頂點在直線y=上且經過點C、D的拋物
線的解析式;
【小題3】(3)將(2)中的拋物線沿直線y=平移,平移后   
的拋物線交y軸于點F,頂點為點E(頂點在y軸右側)。
平移后是否存在這樣的拋物線,使⊿EFG為等腰三角形?
若存在,請求出此時拋物線的解析式;若不存在,請說
明理由。

查看答案和解析>>

(本小題滿分10分)
觀察控究,完成證明和填空.
如圖,四邊形ABCD中,點E、F、G、H分別是邊AB、BC、CD、DA的中點,順次連接E、F、G、H,得到的四邊形EFGH叫中點四邊形.

【小題1】(1)求證:四邊形EFGH是平行四邊形;
【小題2】(2)如圖,當四邊形ABCD變成等腰梯形時,它的中點四邊形是菱形,請你探究并填空:

當四邊形ABCD變成平行四邊形時,它的中點四邊形是__________;
當四邊形ABCD變成矩形時,它的中點四邊形是__________;
當四邊形ABCD變成菱形時,它的中點四邊形是__________;
當四邊形ABCD變成正方形時,它的中點四邊形是__________;
【小題3】(3)根據以上觀察探究,請你總結中點四邊形的形狀由原四邊形的什么決定的?

查看答案和解析>>

(本小題滿分12分)
如圖,在平面直角坐標系xoy中,矩形ABCD的邊AB在x軸上,且AB=3,BC=,直線y=經過點C,交y軸于點G。

(1)點C、D的坐標分別是C(       ),D(       );
(2)求頂點在直線y=上且經過點C、D的拋物
線的解析式;
(3)將(2)中的拋物線沿直線y=平移,平移后   
的拋物線交y軸于點F,頂點為點E(頂點在y軸右側)。
平移后是否存在這樣的拋物線,使⊿EFG為等腰三角形?
若存在,請求出此時拋物線的解析式;若不存在,請說
明理由。

查看答案和解析>>


同步練習冊答案