(1)求證: (2)若圓的半徑為1.△ABE是等邊三角形.求BP的長. 查看更多

 

題目列表(包括答案和解析)

如圖所示,AB為⊙O的直徑,P為AB延長線上一點,PD切⊙O于C,BC和AD的延長線相交于點E,且AB=AE。 (1)求證: (2)若圓的半徑為1,△ABE是等邊三角形,求BP的長.

查看答案和解析>>

如圖所示,AB為⊙O的直徑,P為AB延長線上一點,PD切⊙O于C,BC和AD的延長線相交于點E,且AB=AE。 (1)求證: (2)若圓的半徑為1,△ABE是等邊三角形,求BP的長.

查看答案和解析>>

如圖所示,AB為⊙O的直徑,P為AB延長線上一點,PD切⊙O于C,BC和AD的延長線相交于點E,且AB=AE。 (1)求證:(2)若圓的半徑為1,△ABE是等邊三角形,求BP的長.

【解析】(1)連OC,根據(jù)切線的性質(zhì)得到OC⊥PD,又AB=AE,OC=OB,則∠2=∠E,∠1=∠2,得到∠1=∠E,則OC∥AE,即可得到結(jié)論;

(2)根據(jù)等邊三角形的性質(zhì)得∠A=60°,則∠COB=60°,則∠P=30°,再根據(jù)含30°的直角三角形三邊的關(guān)系得到OP=2OC=2,從而求出BP

 

查看答案和解析>>

如圖所示,AB為⊙O的直徑,P為AB延長線上一點,PD切⊙O于C,BC和AD的延長線相交于點E,且AB=AE。 (1)求證: (2)若圓的半徑為1,△ABE是等邊三角形,求BP的長.

【解析】(1)連OC,根據(jù)切線的性質(zhì)得到OC⊥PD,又AB=AE,OC=OB,則∠2=∠E,∠1=∠2,得到∠1=∠E,則OC∥AE,即可得到結(jié)論;

(2)根據(jù)等邊三角形的性質(zhì)得∠A=60°,則∠COB=60°,則∠P=30°,再根據(jù)含30°的直角三角形三邊的關(guān)系得到OP=2OC=2,從而求出BP

 

查看答案和解析>>

如圖所示,AB為⊙O的直徑,P為AB延長線上一點,PD切⊙O于C,BC和AD的延長線相交于點E,且AB=AE。 (1)求證: (2)若圓的半徑為1,△ABE是等邊三角形,求BP的長.

查看答案和解析>>


同步練習(xí)冊答案