如圖.在四棱錐E―ABCD中.AB⊥平面BCE.CD⊥平面BCE.AB=BC=CE=2CD=4.∠BCE=600. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,在四棱錐E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,AB=BC=CE=2CD=2,∠BCE=120°,F(xiàn)為AE中點.
(Ⅰ)求證:平面ADE⊥平面ABE;
(Ⅱ)求二面角A-EB-D的大小的余弦值;
(Ⅲ)求點F到平面BDE的距離.

查看答案和解析>>

如圖,在四棱錐E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,AB=BC=CE=2CD=2,∠BCE=120°.
(I)求證:平面ADE⊥平面ABE;
(II)求二面角A-EB-D的大小的余弦值.

查看答案和解析>>

精英家教網(wǎng)如圖,在四棱錐E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,AB=BC=CE=2CD=4,∠BCE=60°.
(1)證明:平面BAE⊥平面DAE;
(2)點P為線段AB上一點,求直線PE與平面DCE所成角的取值范圍.

查看答案和解析>>

如圖,在四棱錐E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,AB=BC=CE=2CD=2,∠BCE=120°,F(xiàn)為AE中點.
(Ⅰ)求證:平面ADE⊥平面ABE;
(Ⅱ)求二面角A-EB-D的大小的余弦值;
(Ⅲ)求點F到平面BDE的距離.

查看答案和解析>>

如圖,在四棱錐E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,AB=BC=CE=2CD=2,∠BCE=120°.
①求證:平面ADE⊥平面ABE;
②求點C到平面ADE的距離.

查看答案和解析>>


同步練習冊答案