已知橢圓C:=1()的離心率為, 查看更多

 

題目列表(包括答案和解析)

已知橢圓C:=1()的離心率為,短軸一個端點到右焦點的距離為.

(1)求橢圓的方程;

(2)設直線與橢圓交于、兩點,坐標原點到直線的距離為,求△面積的最大值.

查看答案和解析>>

已知橢圓C:=1()的離心率為,短軸一個端點到右焦點的距離為.
(1)求橢圓的方程;
(2)設直線與橢圓交于兩點,坐標原點到直線的距離為,求△面積的最大值.

查看答案和解析>>

(14分)已知橢圓C:=1()的離心率為,短軸一個端點到右焦點的距離為.

(1)求橢圓的方程;

(2)設直線與橢圓交于、兩點,坐標原點到直線的距離為,

求△面積的最大值.

查看答案和解析>>

已知橢圓C:的離心率為,雙曲線x²-y²=1的漸近線與橢圓有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓c的方程為

查看答案和解析>>

已知橢圓C的離心率為,左、右焦點分別為,點G在橢圓C上,且的面積為3.

1)求橢圓C的方程:

2)設橢圓的左、右頂點為A,B,過的直線與橢圓交于不同的兩點M,N(不同于點A,B),探索直線AM,BN的交點能否在一條垂直于軸的定直線上,若能,求出這條定直線的方程;若不能,請說明理由

 

查看答案和解析>>

一、選擇題:BDCCB   BADCA

二、填空題:    11.  2            12.     

13.       14.

三、解答題:

15、解:依題意得:(1)=0,解之得m=0或m=3

∴當m=0或m=3時,復數(shù)是實數(shù); ……………4分

(2)≠0,解之得m≠0且m≠3

∴當m≠0且m≠3時,復數(shù)是虛數(shù);……………8分

(3),解之得m=3

∴當m=3時,復數(shù)是純虛數(shù).      ……………12分

16、解:(1)∵      ∴  兩邊平方相加,

   即  .       ………………4分

∴曲線是長軸在x軸上且為10,短軸為8,中心在原點的橢圓.   ………6分

(2)∵∴由代入,

                    ……………10分

∴它表示過(0,)和(1, 0)的一條直線.               …………12分

 

 

 

 

 

17、解:(Ⅰ),                                  ………1分

.                               ………2分

            ,.                            ………4分

        橢圓的方程為,                       ………5分

因為                               ………6分

所以離心率.                           ………8分

(Ⅱ)設的中點為,則點.           ………10分

又點K在橢圓上,則中點的軌跡方程為  ………14分

 

 

18、解:(1)列出2×2列聯(lián)表

 

 

說謊

不說謊

合計

女生

15

5

20

男生

10

20

30

合計

25

25

50

…………6分

(2)假設H0 "說謊與性別無關",則隨機變量K2的觀測值:

                  ……………10分

,而             ……………………12分

所以有99.5%的把握認為"說謊與性別有關".          ……………14分

 

 

 

 

 

 

 

 

 

 

 

 

19、解:(1)

………………4分

(2),0×5+1×7+2×8+3×11+4×19=132,

         …………8分

 

故Y關于x的線性回歸方程為 y=3.2x+3.6         ………10分

(3)x=5,y=196(萬)

據(jù)此估計2005年.該 城市人口總數(shù)196(萬)            ………14分

 

 

 

 

 

 

 

 

 

 

 

 

20、解:(1)設橢圓的半焦距為,依題意   ………2分

 

,∴  所求橢圓方程為.         ………4分

 

(2)設,

軸時,.                                ………5分

軸不垂直時,設直線的方程為.        ………6分

由已知,得.                 ………7分

代入橢圓方程,整理得,………8分

,.………10分

.     ………12分

當且僅當,即時等號成立.當時,,

綜上所述.                                      ………13分

最大時,面積取最大值.………14分

 

 


同步練習冊答案