在直二面角中.直線.直線.a.b與相交但不垂直.則( ) 查看更多

 

題目列表(包括答案和解析)

4、在直二面角α-l-β中,直線a?α,直線b?β,a,b與l斜交,則( 。

查看答案和解析>>

在直二面角A1ADB中,四邊形A1ADD1、ABCD是長方形,已知A1A=AB=1,BC=2,E為AD的中點,則異面直線A1E與BD所成角的余弦值為

A.                 B.                 C.                D.

查看答案和解析>>

在直二面角α-l-β中,直線aα,直線bβ,a、b與l斜交,則(    )

A.a不和b垂直,但可能a∥b

B.a可能和b垂直,也可能a∥b

C.a不和b垂直,a也不和b平行

D.a不和b平行,但可能a⊥b

查看答案和解析>>

在直二面角α-l-β中,直線aα,直線bβ,a、b與l斜交,則(    )

A.a(chǎn)不能和b垂直,但可能a∥b              B.a(chǎn)可能和b垂直,也可能a∥b

C.a(chǎn)不能和b垂直,a也不能和b平行        D.a(chǎn)不能和b平行,但可能a⊥b

查看答案和解析>>

在直角梯形P1DCB中,P1D∥CB,CD∥P1D且P1D=6,BC=3,DC=
6
,A是P1D的中點,沿AB把平面P1AB折起到平面PAB的位置,使二面角P-CD-B成45°角,設(shè)E、F分別是線段AB、PD的中點.
(1)求證:AF∥平面PEC;
(2)求平面PEC和平面PAD所成的銳二面角的大;
(3)求點D到平面PEC的距離.

查看答案和解析>>

 

一、DCABB   DDCBC   AB

二、13.  192    14.   640     15.   4     16.   

17.

(1)     …5分

(2)由已知及(1)知     

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)(Zxxk.Com)正弦定理得:

   ……………………10分

18.由題設(shè)及等比數(shù)列的性質(zhì)得 

又                 ②

由①②得  或            …………………4分

    或                     …………………6分

                      …………………8分

時,        …………………10分

時,………………12分

19.略(見課本B例1)

20.解:

(1)在正四棱柱中,因為

所以           

又             

連接于點,連接,則,所以

所以是由截面與底面所成二面角的平面角,即

學(xué)科網(wǎng)(Zxxk.Com)

所以                 .....................4分

(2)由題設(shè)知是正四棱柱.

因為                  

所以                   

又                     

所以是異面直線之間的距離。

因為,而是截面與平面的交線,

所以                     

                   

即異面直線之間的距離為

(3)由題知

                        

因為                    

所以是三棱錐的高,

在正方形中,分別是的中點,則

                             

所以                    

即三棱錐的體積是.

21.(1)解:,由此得切線的方程為

         ………………………4分

(2)切線方程令,得

當且僅當時等號成立!9分

②若,則又由

                   ………………………12分

22.(1)由題可得,設(shè)  

 

  

   又

    點P的坐標為   ……………………3分

 

(2)由題意知,量直線的斜率必存在,設(shè)PB的斜率為

則PB的直線方程為:由  得

,顯然1是該方程的根

,依題意設(shè)故可得A點的橫坐標

 

                   ……………………7分

(3)設(shè)AB的方程為,帶入并整理得

               

                  

   …………………(

設(shè)

                 

點P到直線AB的距離

當且僅當,即時取“=”號(滿足條件

的面積的最大值為2                      ………………………12分

 

 

 

 


同步練習(xí)冊答案