如圖.P是等邊三角形ABC內(nèi)一點.將△ABP繞點B順時針方向旋轉(zhuǎn)60°.得到△CBP′.若PB=3.則PP′= 查看更多

 

題目列表(包括答案和解析)

等邊三角形是大家熟悉的特殊三角形,除了以前我們所知道的它的一些性質(zhì)外,它還有很多其它的性質(zhì),我們來研究下面的問題:

如圖1,點P是等邊△ABC的中心,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,易證:BE+CF+AD=EC+AF+BD
問題提出:如圖2,若點P是等邊△ABC內(nèi)任意一點,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,上述結(jié)論還成立嗎?
為了解決這個問題,現(xiàn)給予證明過程:
證明:連接PA、PB、PC,在Rt△PBE和Rt△PEC中,PB2=PE2+BE2,PC2=PE2+CE2,∴PB2-PC2=BE2-CE2
同理可證:PC2-PA2=CF2-AF2,PA2-PB2=AD2-BD2
將上述三式相加得:BE2-CE2+CF2-AF2+AD2-BD2=0,即:(BE+CE)(BE-CE)+(CF+AF)(CF-AF)+(AD+BD)(AD-BD)=0
∵△ABC是等邊三角形,設(shè)邊長為a.
∴BE+CE=CF+AF=AD+BD=a;
∴a(BE-CE)+a(CF-AF)+a(AD-BD)=0;
∴BE-CE+CF-AF+AD-BD=0;
∴BE+CF+AD=EC+AF+BD.
問題拓展:如圖3,若點P是等邊△ABC的邊上任意一點,PD⊥AB于D,PF⊥AC于F,上述結(jié)論還成立嗎?若成立,請直接寫出結(jié)論,不用證明;若不成立,請說明理由.
問題解決:
如圖4,若點P是等邊△ABC外任意一點,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,上述結(jié)論還成立嗎?若成立,請寫出證明過程;若不成立,請說明理由.

查看答案和解析>>

等邊三角形是大家熟悉的特殊三角形,除了以前我們所知道的它的一些性質(zhì)外,它還有很多其它的性質(zhì),我們來研究下面的問題:

如圖1,點P是等邊△ABC的中心,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,易證:BE+CF+AD=EC+AF+BD
問題提出:如圖2,若點P是等邊△ABC內(nèi)任意一點,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,上述結(jié)論還成立嗎?
為了解決這個問題,現(xiàn)給予證明過程:
證明:連接PA、PB、PC,在Rt△PBE和Rt△PEC中,PB2=PE2+BE2,PC2=PE2+CE2,∴PB2-PC2=BE2-CE2
同理可證:PC2-PA2=CF2-AF2,PA2-PB2=AD2-BD2
將上述三式相加得:BE2-CE2+CF2-AF2+AD2-BD2=0,即:(BE+CE)(BE-CE)+(CF+AF)(CF-AF)+(AD+BD)(AD-BD)=0
∵△ABC是等邊三角形,設(shè)邊長為a.
∴BE+CE=CF+AF=AD+BD=a;
∴a(BE-CE)+a(CF-AF)+a(AD-BD)=0;
∴BE-CE+CF-AF+AD-BD=0;
∴BE+CF+AD=EC+AF+BD.
問題拓展:如圖3,若點P是等邊△ABC的邊上任意一點,PD⊥AB于D,PF⊥AC于F,上述結(jié)論還成立嗎?若成立,請直接寫出結(jié)論,不用證明;若不成立,請說明理由.
問題解決:
如圖4,若點P是等邊△ABC外任意一點,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,上述結(jié)論還成立嗎?若成立,請寫出證明過程;若不成立,請說明理由.

查看答案和解析>>

如圖,點O是等邊△ABC內(nèi)一點,∠AOB=110°,∠BOC=a.將△BOC繞點C按順時針方向旋轉(zhuǎn)60°得精英家教網(wǎng)△ADC,連接OD.
(1)求證:△COD是等邊三角形;
(2)當(dāng)a=150°時,試判斷△AOD的形狀,并說明理由;
(3)探究:當(dāng)a為多少度時,△AOD是等腰三角形?

查看答案和解析>>

25、如圖,點O是等邊△ABC內(nèi)一點.將△BOC繞點C按逆時針方向旋轉(zhuǎn)60°得△ADC,連接OD.已知∠AOB=110°.
(1)求證:△COD是等邊三角形;
(2)當(dāng)α=150°時,試判斷△AOD的形狀,并說明理由;
(3)探究:當(dāng)α為多少度時,△AOD是等腰三角形.

查看答案和解析>>

14、如圖,O是等邊△ABC內(nèi)一點,將△AOB繞A點逆時針旋轉(zhuǎn),使得B,O兩點的對應(yīng)分別為C,D,則旋轉(zhuǎn)角為
60
度,圖中除△ABC外,還有等邊三形是△
AOD

查看答案和解析>>


同步練習(xí)冊答案