31、課外興趣小組活動(dòng)時(shí),老師提出了如下問(wèn)題:
(1)如圖1,在△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過(guò)合作交流,得到了如下的解決方法:延長(zhǎng)AD到E,使得DE=AD,再連接BE(或?qū)ⅰ鰽CD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三邊關(guān)系可得2<AE<8,則1<AD<4.
[感悟]解題時(shí),條件中若出現(xiàn)“中點(diǎn)”“中線”字樣,可以考慮構(gòu)造以中點(diǎn)為對(duì)稱中心的中心對(duì)稱圖形,把分散的已知條件和所求證的結(jié)論集中到同一個(gè)三角形中.
(2)解決問(wèn)題:受到(1)的啟發(fā),請(qǐng)你證明下列命題:如圖2,在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF.
求證:BE+CF>EF,若∠A=90°,探索線段BE、CF、EF之間的等量關(guān)系,并加以證明.