24.在△ABC中.∠A+∠B=110°.∠C=∠B.求∠A.∠B.∠C的度數(shù). 查看更多

 

題目列表(包括答案和解析)

(7分)如圖,在△ABC中,AB="AC," ∠BAD=30°,AD="AE," 求∠EDC的度數(shù).

查看答案和解析>>

如圖1,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的長.

小萍同學(xué)靈活運用軸對稱知識,將圖形進(jìn)行翻折變換如圖1.她分別以AB、AC為對稱軸,畫出△ABD、△ACD的軸對稱圖形,D點的對稱點為E、F,延長EB、FC相交于G點,得到四邊形AEGF是正方形.設(shè)AD=x,利用勾股定理,建立關(guān)于x的方程模型,求出x的值.

(1)請你幫小萍求出x的值.

(2)  參考小萍的思路,探究并解答新問題:

如圖2,在△ABC中,∠BAC=30°,AD⊥BC于D,AD=4.請你按照小萍的方法畫圖,得到四邊形AEGF,求△BGC的周長.(畫圖所用字母與圖1中的字母對應(yīng))

 

查看答案和解析>>

如圖1,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的長.

小萍同學(xué)靈活運用軸對稱知識,將圖形進(jìn)行翻折變換如圖1.她分別以AB、AC為對稱軸,畫出△ABD、△ACD的軸對稱圖形,D點的對稱點為E、F,延長EB、FC相交于G點,得到四邊形AEGF是正方形.設(shè)AD=x,利用勾股定理,建立關(guān)于x的方程模型,求出x的值.

(1)請你幫小萍求出x的值.

(2)  參考小萍的思路,探究并解答新問題:

如圖2,在△ABC中,∠BAC=30°,AD⊥BC于D,AD=4.請你按照小萍的方法畫圖,得到四邊形AEGF,求△BGC的周長.(畫圖所用字母與圖1中的字母對應(yīng))

 

查看答案和解析>>

如圖1,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的長.

小萍同學(xué)靈活運用軸對稱知識,將圖形進(jìn)行翻折變換如圖1.她分別以AB、AC為對稱軸,畫出△ABD、△ACD的軸對稱圖形,D點的對稱點為E、F,延長EB、FC相交于G點,得到四邊形AEGF是正方形.設(shè)AD=x,利用勾股定理,建立關(guān)于x的方程模型,求出x的值.

(1)請你幫小萍求出x的值.

(2)  參考小萍的思路,探究并解答新問題:

如圖2,在△ABC中,∠BAC=30°,AD⊥BC于D,AD=4.請你按照小萍的方法畫圖,得到四邊形AEGF,求△BGC的周長.(畫圖所用字母與圖1中的字母對應(yīng))

 

查看答案和解析>>

如圖1,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的長.
小萍同學(xué)靈活運用軸對稱知識,將圖形進(jìn)行翻折變換如圖1.她分別以AB、AC為對稱軸,畫出△ABD、△ACD的軸對稱圖形,D點的對稱點為E、F,延長EB、FC相交于G點,得到四邊形AEGF是正方形.設(shè)AD=x,利用勾股定理,建立關(guān)于x的方程模型,求出x的值.

(1)請你幫小萍求出x的值.
(2)  參考小萍的思路,探究并解答新問題:
如圖2,在△ABC中,∠BAC=30°,AD⊥BC于D,AD=4.請你按照小萍的方法畫圖,得到四邊形AEGF,求△BGC的周長.(畫圖所用字母與圖1中的字母對應(yīng))

查看答案和解析>>


同步練習(xí)冊答案