在平面幾何中.我們學(xué)過兩條直線平行的定義.下面就兩個(gè)一次函數(shù)的圖象所確定的兩條直線.給出它們平行的定義:設(shè)一次函數(shù)的圖象為直線.一次函數(shù)的圖象為直線.若.且.我們就稱直線與直線互相平行. 查看更多

 

題目列表(包括答案和解析)

閱讀下面的材料:
在平面幾何中,我們學(xué)過兩條直線平行的定義.下面就兩個(gè)一次函數(shù)的圖象所確定的兩條直線,給出它們平行的定義:設(shè)一次函數(shù)y=k1x+b1(k1≠0)的圖象為直線l1,一次函數(shù)y=k2x+b2(k2≠0)的圖象為直線l2,若k1=k2,且b1≠b2,我們就稱直線l1與直線l2互相平行.
解答下面的問題:
(1)已知一次函數(shù)y=-2x的圖象為直線l1,求過點(diǎn)P(1,4)且與已知直線l1平行的直線l2的函數(shù)表達(dá)式,并在坐標(biāo)系中畫出直線l1和l2的圖象;
(2)設(shè)直線l2分別與y軸、x軸交于點(diǎn)A、B,過坐標(biāo)原點(diǎn)O作OC⊥AB,垂足為C,求l1和l2兩平行線之間的距離OC的長;
(3)若Q為OA上一動(dòng)點(diǎn),求QP+QB的最小值,并求取得最小值時(shí)Q點(diǎn)的坐標(biāo).

查看答案和解析>>

閱讀下面的材料:在平面幾何中,我們學(xué)過兩條直線平行的定義.下面就兩個(gè)一次函數(shù)的圖象所確定的兩條直線,給出它們平行的定義:設(shè)一次函數(shù)y=k1x+b1(k1≠0)的圖象為直線l1,一次函數(shù)y=k2x+b2(k2≠0)的圖象為直線l2,若k1=k2,且b1≠b2,精英家教網(wǎng)我們就稱直線l1與直線l2互相平行.解答下面的問題:
(1)求過點(diǎn)P(1,4)且與已知直線y=-2x-1平行的直線l的函數(shù)表達(dá)式,并畫出直線l的圖象;
(2)設(shè)直線l分別與y軸、x軸交于點(diǎn)A、B,如果直線m:y=kx+t(t>0)與直線l平行且交x軸于點(diǎn)C,求出△ABC的面積S關(guān)于t的函數(shù)表達(dá)式.

查看答案和解析>>

在平面幾何中,我們學(xué)過兩條直線平行的定義.下面就兩個(gè)一次函數(shù)的圖象所確定的兩知直線,給出它們平行的定義:
設(shè)一次函數(shù)y=k1x+b(k1≠0)的圖象為直線l1,一次函數(shù)y=k2x+b(k2≠0)的圖象為直線l2,若k1=k2,且b1≠b2,我們就稱直線l1與直線l2互相平行.如圖,將直線y=4x沿y軸向下平移后,得到的直線與x軸交于點(diǎn)A(
9
4
,0
),與精英家教網(wǎng)雙曲線y=
k
x
(x>0)交于點(diǎn)B.
(1)求直線AB的解析式;
(2)若點(diǎn)B的縱坐標(biāo)為m,求雙曲線解析式(用含m的代數(shù)式表示).

查看答案和解析>>

(本題8分)閱讀下面的材料:
在平面幾何中,我們學(xué)過兩條直線平行的定義.下面就兩個(gè)一次函數(shù)的圖象所確定的兩條直線,給出它們平行的定義:設(shè)一次函數(shù)y=k1x+b1(k1≠0)的圖象為直線L1,一次函數(shù)y=k2x+b2(k2≠0)的圖象為直線L2,若k1=k2,且b1≠b2,我們就稱直線L1與直線L2互相平行.解答下面的問題:
(1)求過點(diǎn)P(1,4),且與直線y=-2x-1平行的直線L的函數(shù)解析式,并畫出直線L的圖象;
(2)設(shè)直線L分別與y軸,x軸交于點(diǎn)A,B,如果直線m:y=kx+t(t>0)與直線L平行,且交x軸于點(diǎn)C,求出△ABC的面積S關(guān)于t函數(shù)解析式.
 

查看答案和解析>>

閱讀下面的材料:在平面幾何中,我們學(xué)過兩條直線平行的定義.下面就兩個(gè)一次函數(shù)的圖象所確定的兩條直線,給出它們平行的定義:設(shè)一次函數(shù)y=k1x+b1(k1≠0)的圖象為直線l1,一次函數(shù)y=k2x+b2(k2≠0)的圖象為直線l2,若k1=k2,且b1≠b2,我們就稱直線l1與直線l2互相平行.解答下面的問題:
(1)求過點(diǎn)P(1,4)且與已知直線y=-2x-1平行的直線l的函數(shù)表達(dá)式,并畫出直線l的圖象;
(2)設(shè)直線l分別與y軸、x軸交于點(diǎn)A、B,如果直線m:y=kx+t(t>0)與直線l平行且交x軸于點(diǎn)C,求出△ABC的面積S關(guān)于t的函數(shù)表達(dá)式.

查看答案和解析>>


同步練習(xí)冊答案