(3)設G為y軸上一點.點P從直線與y軸的交點出發(fā).先沿y軸到達G點.再沿GA到達A點.若P點在y軸上運動的速度是它在直線GA上運動速度的2倍.試確定G點的位置.使P點按照上述要求到達A點所用的時間最短.(要求:簡述確定G點位置的方法.但不要求證明) 查看更多

 

題目列表(包括答案和解析)

    已知直線與x軸、y軸分別交干A、B兩點.  ∠ABC=60°.BC與x軸交于點C.

(1)試確定直線BC的解析式.

(2)若動點P從A點山發(fā)沿AC向點C運動(不與A、C重舍).同時動點Q從C點出發(fā)沿CBA向點A運動(不與C、A重合),動點P的運動速度是每秒l個單位長度. 動點Q的運動速度是每杪2個單位長度.設△APQ的面積為S.P點的運動時間為t秒,求S與t的函數(shù)關系式,并寫出自變量的取值范圍.

(3)在(2)的條件下.當△APQ的面積最大時.y軸上有一點M,平面內是否存在一點N,使以A、Q、M、N為頂點的四邊形為菱形?若存在,請直接寫出N點的坐標:

    若不存在.請說明理由.

查看答案和解析>>

已知直線y=
3
x+4
3
與x軸、y軸分別交于A、B兩點,∠ABC=60°,BC與x軸交于精英家教網(wǎng)點C.
(1)試確定直線BC的解析式.
(2)若動點P從A點出發(fā)沿AC向點C運動(不與A、C重合),同時動點Q從C點出發(fā)沿CBA向點A運動(不與C、A重合),動點P的運動速度是每秒1個單位長度,動點Q的運動速度是每秒2個單位長度.設△APQ的面積為S,P點的運動時間為t秒,求S與t的函數(shù)關系式,并寫出自變量的取值范圍.
(3)在(2)的條件下,當△APQ的面積最大時,y軸上有一點M,平面內是否存在一點N,使以A、Q、M、N為頂點的四邊形為菱形?若存在,請直接寫出N點的坐標;若不存在,請說明理由.

查看答案和解析>>

精英家教網(wǎng)如圖,點A在y軸上,點B在x軸上,且OA=OB=1,經(jīng)過原點O的直線l交線段AB于點C,過C作OC的垂線,與直線x=1相交于點P,現(xiàn)將直線L繞O點旋轉,使交點C從A向B運動,但C點必須在第一象限內,并記AC的長為t,分析此圖后,對下列問題作出探究:
(1)當△AOC和△BCP全等時,求出t的值;
(2)通過動手測量線段OC和CP的長來判斷它們之間的大小關系并證明你得到的結論;
(3)①設點P的坐標為(1,b),試寫出b關于t的函數(shù)關系式和變量t的取值范圍.
②求出當△PBC為等腰三角形時點P的坐標.

查看答案和解析>>

已知直線y=x+4與x軸,y軸分別交于A、B兩點, ∠ABC=60°,BC與x軸交于點C。
(1)試確定直線BC的解析式;
(2)若動點P從A點出發(fā)沿AC向點C運動(不與A、C重合),同時動點Q從C點出發(fā)沿CBA向點A運動(不與C、A重合) ,動點P的運動速度是每秒1個單位長度,動點Q的運動速度是每秒2個單位長度,設△APQ的面積為S,P點的運動時間為t秒,求S與t的函數(shù)關系式,并寫出自變量的取值范圍;
(3)在(2)的條件下,當△APQ的面積最大時,y軸上有一點M,平面內是否存在一點N,使以A、Q、M、N為頂點的四邊形為菱形?若存在,請直接寫出N點的坐標;若不存在,請說明理由。

查看答案和解析>>

已知直線y=x+4與x軸、y軸分別交于A、B兩點,∠ABC=60°,BC與x軸交于點C.

(1)試確定直線BC的解析式.

(2)若動點P從A點出發(fā)沿AC向點C運動(不與A、C重合),同時動點Q從C點出發(fā)沿CBA向點A運動(不與C、A重合),動點P的運動速度是每秒1個單位長度,動點Q的運動速度是每秒2個單位長度.設△APQ的面積為S,P點的運動時間為t秒,求S與t的函數(shù)關系式,并寫出自變量的取值范圍.

(3)在(2)的條件下,當△APQ的面積最大時,y軸上有一點M,平面內是否存在一點N,使以A、Q、M、N為頂點的四邊形為菱形?若存在,請直接寫出N點的坐標;若不存在,請說明理由.

查看答案和解析>>


同步練習冊答案