查看更多

 

題目列表(包括答案和解析)


x 3 4 5 6
y 2.5 3 4 4.5
(1)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程y=
b
x+
a
;
(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

13、.對(duì)一批學(xué)生的抽樣成績(jī)的莖葉圖如下:則□表示的原始數(shù)據(jù)為
35

查看答案和解析>>

12、.若函數(shù)f(x)=x2+2(a-1)x+2在(-∞,4)上是減函數(shù),則實(shí)數(shù)a的取值范圍是
a≤-3

查看答案和解析>>

.已知冪函數(shù)f(x)=xk2-2k-3(k∈N*)的圖象關(guān)于y軸對(duì)稱,且在區(qū)間(0,+∞)上是減函數(shù),
(1)求函數(shù)f(x)的解析式;
(2)若a>k,比較(lna)0.7與(lna)0.6的大。

查看答案和解析>>

.在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且c2=a2+b2-ab.
(Ⅰ)求角C;
(Ⅱ)設(shè)
m
=(sinA,1)
n
=(3,cos2A)
,試求
m
n
的最大值.

查看答案和解析>>

一、選擇題(本大題共8小題,每小題5分,共40分)

1.D      2.A      3.B       4.D      5.B       6.C       7.C       8.B

二、填空題(本大題共6小題,每小題5分,共30分)

9.           10.           11.5      10           12.            

13.②           14. 

三、解答題(本大題共6小題,共80分)

15.(共13分)

解:(Ⅰ)

因?yàn)楹瘮?shù)的最小正周期為,且

所以,解得

(Ⅱ)由(Ⅰ)得

因?yàn)?sub>,

所以

所以,

因此,即的取值范圍為

16.(共14分)

解法一:

(Ⅰ)取中點(diǎn),連結(jié)

,

,

平面

平面,

(Ⅱ),

,

,即,且,

平面

中點(diǎn).連結(jié)

,

在平面內(nèi)的射影,

是二面角的平面角.

中,,,

二面角的大小為

(Ⅲ)由(Ⅰ)知平面

平面平面

過(guò),垂足為

平面平面

平面

的長(zhǎng)即為點(diǎn)到平面的距離.

由(Ⅰ)知,又,且,

平面

平面,

中,,

點(diǎn)到平面的距離為

解法二:

(Ⅰ),,

,

平面

平面

(Ⅱ)如圖,以為原點(diǎn)建立空間直角坐標(biāo)系

設(shè)

,

,

中點(diǎn),連結(jié)

,

,

是二面角的平面角.

,,

二面角的大小為

(Ⅲ),

在平面內(nèi)的射影為正的中心,且的長(zhǎng)為點(diǎn)到平面的距離.

如(Ⅱ)建立空間直角坐標(biāo)系

,

點(diǎn)的坐標(biāo)為

點(diǎn)到平面的距離為

17.(共13分)

解:(Ⅰ)記甲、乙兩人同時(shí)參加崗位服務(wù)為事件,那么

即甲、乙兩人同時(shí)參加崗位服務(wù)的概率是

(Ⅱ)記甲、乙兩人同時(shí)參加同一崗位服務(wù)為事件,那么,

所以,甲、乙兩人不在同一崗位服務(wù)的概率是

(Ⅲ)隨機(jī)變量可能取的值為1,2.事件“”是指有兩人同時(shí)參加崗位服務(wù),

所以,的分布列是

1

3

 

18.(共13分)

解:

,得

當(dāng),即時(shí),的變化情況如下表:

0

當(dāng),即時(shí),的變化情況如下表:

0

所以,當(dāng)時(shí),函數(shù)上單調(diào)遞減,在上單調(diào)遞增,

上單調(diào)遞減.

當(dāng)時(shí),函數(shù)上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減.

當(dāng),即時(shí),,所以函數(shù)上單調(diào)遞減,在上單調(diào)遞減.

19.(共14分)

解:(Ⅰ)由題意得直線的方程為

因?yàn)樗倪呅?sub>為菱形,所以

于是可設(shè)直線的方程為

因?yàn)?sub>在橢圓上,

所以,解得

設(shè)兩點(diǎn)坐標(biāo)分別為

,

所以

所以的中點(diǎn)坐標(biāo)為

由四邊形為菱形可知,點(diǎn)在直線上,

所以,解得

所以直線的方程為,即

(Ⅱ)因?yàn)樗倪呅?sub>為菱形,且,

所以

所以菱形的面積

由(Ⅰ)可得,

所以

所以當(dāng)時(shí),菱形的面積取得最大值

20.(共13分)

(Ⅰ)解:

,

;

,

(Ⅱ)證明:設(shè)每項(xiàng)均是正整數(shù)的有窮數(shù)列

,,,,

從而

,

所以

同步練習(xí)冊(cè)答案