A., B., 查看更多

 

題目列表(包括答案和解析)

A、B是拋物線C:y2=2px(p>0)上的兩個動點,F(xiàn)是焦點,直線AB不垂直于x軸且交x軸于點D.
(1)若D與F重合,且直線AB的傾斜角為
π
4
,求證:
OA
OB
p2
是常數(shù)(O是坐標原點);
(2)若|AF|+|BF|=8,線段AB的垂直平分線恒過定點Q(6,0),求拋物線C的方程.

查看答案和解析>>

A、B是直線y=1與函數(shù)f(x)=2cos2
ωx
2
+cos(ωx+
π
3
)
(ω>0)圖象的兩個相鄰交點,且|AB|=
π
2

(1)求ω的值;
(2)在銳角△ABC中,a,b,c分別是角A,B,C的對邊,若f(A)=-
1
2
,c=3,△ABC
的面積為3
3
,求a的值.

查看答案和解析>>

A、B是直線y=0與函數(shù)f(x)=2cos2
ωx
2
+cos(ωx+
π
3
)-1(ω>0)
圖象的兩個相鄰交點,且|AB|=
π
2

(Ⅰ)求ω的值;
(Ⅱ)在銳角△ABC中,a,b,c分別是角A,B,C的對邊,若f(A)=-
3
2
,c=3,△ABC
的面積為3
3
,求a的值.

查看答案和解析>>

A、B、C為△ABC的三內(nèi)角,且其對邊分別為a、b、c,若
m
=(-cos
A
2
,sin
A
2
)
,
n
=(cos
A
2
,sin
A
2
)
,且
m
n
=
1
2

(Ⅰ) 求角A;
(Ⅱ) 若a=2
3
,三角形面積S=
3
,求b+c的值.

查看答案和解析>>

A、B兩座城市相距100km,在兩地之間距A城市xkm的D處建一核電站給A、B兩城供電,為保證城市安全,核電站距城市的距離不得少于10km.已知供電費用與“供電距離的平方與供電量之積”成正比,比例系數(shù)k=0.25,若A城市供電量為20億度/月,B城市為10億度/月.
(1)求x的范圍;
(2)把月供電總費用y表示成x的函數(shù);
(3)核電站建在距A城多遠,才能使供電總費用最小.

查看答案和解析>>

一、選擇題:   CCDBACAB

二、填空題:

9、1;        10、;假;     11、2;         12、[0,2];  

13、; 14、;    15、; 16、①、③

三、解答題:

   17、解:(Ⅰ)

              

      (Ⅱ)

          

18、解:(Ⅰ)偶函數(shù)              …………4分

(Ⅱ)(略)                         …………8分

(Ⅲ)①  2                        …………10分

          …………12分

19、解:(Ⅰ)(略)用定義或?qū)?shù)證明    …………8分

       (Ⅱ)

          

20、解:(Ⅰ)

             

   21、解:(Ⅰ)在圖象上任取一點(x,y),則(x,y)關(guān)于(0,1)的對稱點為(-x,2-y)

       由題意得:

(Ⅱ)       (Ⅲ)(略)………………………………14分

   22、解:(Ⅰ)的不動點是-1,2  ………………3分

(Ⅱ)由得:,  由已知,此方程有相異二實根

 

(Ⅲ)設A(x1,y1), B(x2,y2)  直線是線段AB的垂直平分線,

  令AB的中點,由(Ⅱ)知

        (當且僅當時,取等號)  又

 


同步練習冊答案