將一矩形紙片OABC放在直角坐標(biāo)系中,O為原點(diǎn),C在x軸上,OA=6,OC=10.
(1)如圖(1),在OA上取一點(diǎn)E,將△EOC沿EC折疊,使O點(diǎn)落在AB邊上的D點(diǎn),求E點(diǎn)的坐標(biāo);
(2)如圖(2),在OA、OC邊上選取適當(dāng)?shù)狞c(diǎn)E′、F,將△E′OF沿E′F折疊,使O點(diǎn)落在AB邊上的D′點(diǎn),過(guò)D′作D′G⊥C′O交E′F于T點(diǎn),交OC′于G點(diǎn),求證:TG=A′E′.
(3)在(2)的條件下,設(shè)T(x,y)①探求:y與x之間的函數(shù)關(guān)系式.②指出變量x的取值范圍.
(4)如圖(3),如果將矩形OABC變?yōu)槠叫兴倪呅蜲A″B″C″,使O C″=10,O C″邊上的高等于6,其它條件均不變,探求:這時(shí)T(x,y)的坐標(biāo)y與x之間是否仍然滿足(3)中所得的函數(shù)關(guān)系,若滿足,請(qǐng)說(shuō)明理由;若不滿足,寫出你認(rèn)為正確的函數(shù)關(guān)系式.