(2)若直線MN的斜率為-1,且原點到直線MN的距離為4(-1),求此時的橢圓方程, 查看更多

 

題目列表(包括答案和解析)

如圖,已知過原點O從x軸正方向出發(fā)逆時針旋轉(zhuǎn)240°得到射線t,點A(x,y)在射線t上(x<0,y<0=,設(shè)|OA|=m,又知點B在射線y=0(x<0=上移動,設(shè)P為第三象限內(nèi)的動點,若·=0,且·,·,||2成等差數(shù)列.

(1)試問點P的軌跡是什么曲線?

(2)已知直線l的斜率為,若直線l與曲線C有兩個不同的交點M,N,設(shè)線段MN的中點為Q,求點Q的橫坐標的取值范圍.

查看答案和解析>>

(理)如圖,與拋物線x2=-4y相切于點A(-4,-4)的直線l分別交x軸、y軸于點F、E,過點E作y軸的垂線l0.

(1)若以l0為一條準線,中心在坐標原點的橢圓恰與直線l也相切,切點為T,求橢圓的方程及點T的坐標;

(2)若直線l與雙曲線6x2-λy2=8的兩個交點為M、N,且點A為線段MN的中點,又過點E的直線與該雙曲線的兩支分別交于P、Q兩點,記在x軸正方向上的投影為p,且()p2=m,m∈[,],求(1)中切點T到直線PQ的距離的最小值.

(文)如圖,與拋物線x2=-4y相切于點A(-4,-4)的直線l分別交x軸、y軸于點F、E,過點E作y軸的垂線l0.

(1)若以l0為一條準線,中心在坐標原點的橢圓恰好過點F,求橢圓的方程;

(2)若直線l與雙曲線6x2-λy2=8的兩個交點為M、N,且點A為線段MN的中點,又過點E的直線與該雙曲線的兩支分別交于P、Q兩點,記在x軸正方向上的投影為p,且()p2=m,m∈[,],求直線PQ的斜率的取值范圍.

查看答案和解析>>

(理)如圖,與拋物線x2=-4y相切于點A(-4,-4)的直線l分別交x軸、y軸于點F、E,過點E作y軸的垂線l0.

(1)若以l0為一條準線,中心在坐標原點的橢圓恰與直線l也相切,切點為T,求橢圓的方程及點T的坐標;

(2)若直線l與雙曲線6x2-λy2=8的兩個交點為M、N,且點A為線段MN的中點,又過點E的直線與該雙曲線的兩支分別交于P、Q兩點,記在x軸正方向上的投影為p,且p2=m,m∈,求(1)中切點T到直線PQ的距離的最小值.

(文)如圖,與拋物線x2=-4y相切于點A(-4,-4)的直線l分別交x軸、y軸于點F、E,過點E作y軸的垂線l0.

(1)若以l0為一條準線,中心在坐標原點的橢圓恰好過點F,求橢圓的方程;

(2)若直線l與雙曲線6x2-λy2=8的兩個交點為M、N,且點A為線段MN的中點,又過點E的直線與該雙曲線的兩支分別交于P、Q兩點,記在x軸正方向上的投影為p,且=m,m∈,求直線PQ的斜率的取值范圍.

查看答案和解析>>

已知橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0),以F1(-c,0)為圓心,以a-c為半徑作圓F1,過點B2(0,b)作圓F1的兩條切線,設(shè)切點為M、N.
(1)若過兩個切點M、N的直線恰好經(jīng)過點B1(0,-b)時,求此橢圓的離心率;
(2)若直線MN的斜率為-1,且原點到直線MN的距離為4(
2
-1),求此時的橢圓方程;
(3)是否存在橢圓E,使得直線MN的斜率k在區(qū)間(-
2
2
,-
3
3
)內(nèi)取值?若存在,求出橢圓E的離心率e的取值范圍;若不存在,請說明理由.

查看答案和解析>>

已知雙曲線的中心在原點,焦點在x軸上,離心率為2,過其右焦點且傾斜角為45°的直線被雙曲線截得的弦MN的長為6.
(Ⅰ)求此雙曲線的方程;
(Ⅱ)若直線l:y=kx+m與該雙曲線交于兩個不同點A、B,且以線段AB為直徑的圓過原點,求定點Q(0,-1)到直線l的距離d的最大值,并求此時直線l的方程.

查看答案和解析>>


同步練習冊答案