則且.得.所以a的最大值為 -1 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

單調遞減;當單調遞增,故當時,取最小值

于是對一切恒成立,當且僅當.       、

時,單調遞增;當時,單調遞減.

故當時,取最大值.因此,當且僅當時,①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當時,單調遞減;當時,單調遞增.故當,

從而,

所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點評】本題考查利用導函數(shù)研究函數(shù)單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學方法.第一問利用導函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉化為從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數(shù),研究這個函數(shù)的性質進行分析判斷.

 

查看答案和解析>>

(2009•成都二模)已知空間向量
OA
=(1,K,0)(k∈Z)
,|
OA
| ≤3
OB
=(3,1,0)
,O為坐標原點,給出以下結論:①以OA、OB為鄰邊的平行四邊形OACB中,當且僅當k=2時,|
OC
|
取得最小值;②當k=2時,到A和點B等距離的動點P(x,y,z)的軌跡方程為4x-2y-5=0,其軌跡是一條直線;③若
OP
=(0,0,1)
,則三棱錐O-ABP體積的最大值為
7
6
;④若
OP
=(0,0,1),則三棱錐O-ABP各個面都為直角三角形的概率為
2
5
.其中,所有正確結論的應是

查看答案和解析>>

已知空間向量,,O為坐標原點,給出以下結論:①以OA、OB為鄰邊的平行四邊形OACB中,當且僅當k=2時,取得最小值;②當k=2時,到A和點B等距離的動點P(x,y,z)的軌跡方程為4x-2y-5=0,其軌跡是一條直線;③若,則三棱錐O-ABP體積的最大值為;④若=(0,0,1),則三棱錐O-ABP各個面都為直角三角形的概率為.其中,所有正確結論的應是   

查看答案和解析>>

已知空間向量數(shù)學公式,數(shù)學公式,數(shù)學公式,O為坐標原點,給出以下結論:①以OA、OB為鄰邊的平行四邊形OACB中,當且僅當k=2時,數(shù)學公式取得最小值;②當k=2時,到A和點B等距離的動點P(x,y,z)的軌跡方程為4x-2y-5=0,其軌跡是一條直線;③若數(shù)學公式,則三棱錐O-ABP體積的最大值為數(shù)學公式;④若數(shù)學公式=(0,0,1),則三棱錐O-ABP各個面都為直角三角形的概率為數(shù)學公式.其中,所有正確結論的應是________.

查看答案和解析>>

本題設有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題做答,滿分14分,如果多做,則按所做的前兩題計分,做答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中。

(1)(本小題滿分7分)選修4-2:矩陣與變換

設矩陣(其中a>0,b>0).

(I)若a=2,b=3,求矩陣M的逆矩陣M-1;

(II)若曲線C:x2+y2=1在矩陣M所對應的線性變換作用下得到曲線C’:,求a,b的值.

(2)(本小題滿分7分)選修4-4:坐標系與參數(shù)方程

在直接坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為

(I)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(4,),判斷點P與直線l的位置關系;

(II)設點Q是曲線C上的一個動點,求它到直線l的距離的最小值.

(3)(本小題滿分7分)選修4-5:不等式選講

設不等式的解集為M.

(I)求集合M;

(II)若a,b∈M,試比較ab+1與a+b的大。

查看答案和解析>>


同步練習冊答案