13.在中.設..分別是..所對的邊長.且滿足條件.則面積的最大值為------------------------- ( ) 查看更多

 

題目列表(包括答案和解析)

中,設、、分別是、、所對的邊長,且滿足條件,則面積的最大值為________________.

查看答案和解析>>

中,角、、所對的邊長分別為、,設命題p:,命題q: 是等邊三角形,那么命題p是命題q的(    )

A.充分不必要條件           B.必要不充分條件.

C.充要條件                 D.既不充分也不必要條件

查看答案和解析>>

中,角的對邊分別是,下列命題:

,則△ABC為鈍角三角形。

②若,則C=45º.

③若,則.

④若已知E為△ABC的邊BC的中點,△ABC所在平面內(nèi)有一點P,滿足,設,則=2,其中正確命題的個數(shù)是

A、1                B、2            C、3                D、4

 

查看答案和解析>>

中,、、分別為內(nèi)角所對的邊,且滿足

(1)證明:;

(2)如圖,點外一點,設,

,當時,求平面四邊形面積的最大值.

 


查看答案和解析>>

在△中,內(nèi)角、所對的邊分別是、,已知,,

(1)若,求、的值;

(2)若角為銳角,設,△的周長為,試求函數(shù)的最大值.

查看答案和解析>>

一.填空題:

1.;    2.;                 3.       4.2;           5.;

6. ;   7.;  8.3;          9.;     10.

二.選擇題:11.B ;     12.C;     13.C.

三.解答題:

14.[解](Ⅰ)方法一(綜合法)設線段的中點為,連接,

為異面直線OC與所成的角(或其補角)  ………………………………..1分

       由已知,可得,

為直角三角形       ……………………………………………………………….1分

,  ……………………………………………………………….4分

所以,異面直線OC與MD所成角的大小.   …………………………..1分

方法二(向量法)

以AB,AD,AO所在直線為軸建立坐標系,

, ……………………………………………………2分

,, ………………………………………………………………………………..1分

 設異面直線OC與MD所成角為,

.……………………………….. …………………………2分

 OC與MD所成角的大小為.…………………………………………………1分

(Ⅱ)方法一(綜合法)

, ……………………………………………………………………………1分

,平面

平面 ………………………………………………………………………………4分

所以,點到平面的距離 …………………………………………………2分

方法二(向量法)

設平面的一個法向量,

…………………………………………………………………2分

……………………………………………………………………………………….2分

到平面的距離為

.……………………………………………………………………3分

15.[解](Ⅰ)設“小明中一等獎”為事件 ,“小輝中一等獎”為事件 ,事件與事件相互獨立,他們倆都中一等獎,則

所以,購買兩張這種彩票都中一等獎的概率為. ………………………………..4分

(Ⅱ)事件的含義是“買這種彩票中獎”,或“買這種彩票中一等獎或中二等獎”…1分

顯然,事件A與事件B互斥,

所以, ………………………………..3分

故購買一張這種彩票能中獎的概率為.……………………………………………………..1分

(Ⅲ)對應不中獎、中二等獎、中一等獎,的分布列如下:

 

…………………………………………..………………………………………………….3分

購買一張這種彩票的期望收益為損失元.…………………………………………………..3分

16.[解] (Ⅰ)由于恒成立,所以函數(shù)的定義域為………………..2分

(1)當時,函數(shù),函數(shù)的值域為…………………………1分

(2)當時,因為,所以,

,從而,………………………………………………..3分

所以函數(shù)的值域為.   ……………………………………………………….1分

(Ⅱ)假設函數(shù)是奇函數(shù),則,對于任意的,有成立,

時,函數(shù)是奇函數(shù).  …………………………………………………….2分

時,函數(shù)是偶函數(shù).  ………………………………………………..2分

,且時,函數(shù)是非奇非偶函數(shù).  ………………………………….1分

對于任意的,且,

………………………………………..3分

所以,當時,函數(shù)是常函數(shù)   ………………………………………..1分

時,函數(shù)是遞減函數(shù).   ………………………………………..1分

17.[解](Ⅰ)由題意,……………………………6分

(Ⅱ)解法1:由

,

,

因此,可猜測)     ………………………………………………………4分

,代入原式左端得

左端

即原式成立,故為數(shù)列的通項.……………………………………………………….3分

用數(shù)學歸納法證明得3分

解法2:由 ,

,且

,……… ……………………………………………………………..4分

所以

因此,,...,

將各式相乘得………………………………………………………………………………3分

(Ⅲ)設上表中每行的公比都為,且.因為,

所以表中第1行至第9行共含有數(shù)列的前63項,故在表中第10行第三列,………2分

因此.又,所以. …………………………………..3分

…………………………………………2分

18.[解](Ⅰ)動點的軌跡是以為原點,以3為半徑的球面 ……………………………1分

并設動點的坐標為,動點滿足

則球面的方程為. …………………………………………………4分

(Ⅱ)設動點,則

所以  ……………………………………………………………5分

整理得曲面的方程:      (*)   …………………………………………2分

若坐標系原點建在平面上的點處,可得曲面的方程:同樣得分.

(Ⅲ)(1)對稱性:由于點關于平面的對稱點、關于平面的對稱點均滿足方程(*),所以曲面關于平面與平面對稱.  …………………2分

又由于點關于軸的對稱點滿足方程(*),所以曲面關于軸對稱.

(2)范圍:由于,所以,,即曲面平面上方.  ………………2分

文本框:  (3)頂點:令,得,即坐標原點在曲面上,點是曲面的頂點.  …2分

 

 

…………………………2分

 

 

 

 

 

 


同步練習冊答案