(Ⅱ)若.對于任何.都有.且.求數(shù)列 的通項公式, 查看更多

 

題目列表(包括答案和解析)

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f''(x)是函數(shù)y=f(x)的導(dǎo)數(shù)
y=f'(x)的導(dǎo)數(shù),若方程f''(x)=0有實數(shù)解,則稱點(,f())為函數(shù)y=f(x)的“拐點”.有同學(xué)發(fā)現(xiàn)“任何一個三次函數(shù)都有‘拐點’;任何一個三次函數(shù)都有對稱中心;且‘拐點’就是對稱中心.”請你將這一發(fā)現(xiàn)為條件,求
(1)函數(shù)f(x)=x3﹣3x2+3x對稱中心為(   ).
(2)若函數(shù)g(x)=x3x2+3x﹣+,則g()+g()+g()+
g()+…+g()=(   ).

查看答案和解析>>

已知函數(shù)f(x)=ax2+4x-2,若對任意x1,x2∈R且x1≠x2,都有f(
x1+x2
2
)<
f(x1)+f(x2)
2

(1)求實數(shù)a的取值范圍;
(2)對于給定的實數(shù)a,有一個最小的負(fù)數(shù)M(a),使得x∈[M(a),0]時,-4≤f(x)≤4都成立,則當(dāng)a為何值時,M(a)最小,并求出M(a)的最小值.

查看答案和解析>>

已知函數(shù)f(x)=ax2+4x-2,若對任意x1,x2∈R且x1≠x2,都有數(shù)學(xué)公式
(1)求實數(shù)a的取值范圍;
(2)對于給定的實數(shù)a,有一個最小的負(fù)數(shù)M(a),使得x∈[M(a),0]時,-4≤f(x)≤4都成立,則當(dāng)a為何值時,M(a)最小,并求出M(a)的最小值.

查看答案和解析>>

已知函數(shù)f(x)=ax2+4x-2,若對任意x1,x2∈R且x1≠x2,都有f(
x1+x2
2
)<
f(x1)+f(x2)
2

(1)求實數(shù)a的取值范圍;
(2)對于給定的實數(shù)a,有一個最小的負(fù)數(shù)M(a),使得x∈[M(a),0]時,-4≤f(x)≤4都成立,則當(dāng)a為何值時,M(a)最小,并求出M(a)的最小值.

查看答案和解析>>

已知函數(shù)f(x)=ax2+4x-2,若對任意x1,x2∈R且x1≠x2,都有
(1)求實數(shù)a的取值范圍;
(2)對于給定的實數(shù)a,有一個最小的負(fù)數(shù)M(a),使得x∈[M(a),0]時,-4≤f(x)≤4都成立,則當(dāng)a為何值時,M(a)最小,并求出M(a)的最小值.

查看答案和解析>>

一.填空題:

1.;    2.;                 3.       4.2;           5.;

6. ;   7.;  8.3;          9.;     10.

二.選擇題:11.B ;     12.C;     13.C.

三.解答題:

14.[解](Ⅰ)方法一(綜合法)設(shè)線段的中點為,連接

為異面直線OC與所成的角(或其補角)  ………………………………..1分

       由已知,可得

為直角三角形       ……………………………………………………………….1分

,  ……………………………………………………………….4分

所以,異面直線OC與MD所成角的大小.   …………………………..1分

方法二(向量法)

以AB,AD,AO所在直線為軸建立坐標(biāo)系,

, ……………………………………………………2分

,, ………………………………………………………………………………..1分

 設(shè)異面直線OC與MD所成角為,

.……………………………….. …………………………2分

 OC與MD所成角的大小為.…………………………………………………1分

(Ⅱ)方法一(綜合法)

, ……………………………………………………………………………1分

,平面

平面 ………………………………………………………………………………4分

所以,點到平面的距離 …………………………………………………2分

方法二(向量法)

設(shè)平面的一個法向量,

…………………………………………………………………2分

……………………………………………………………………………………….2分

設(shè)到平面的距離為

.……………………………………………………………………3分

15.[解](Ⅰ)設(shè)“小明中一等獎”為事件 ,“小輝中一等獎”為事件 ,事件與事件相互獨立,他們倆都中一等獎,則

所以,購買兩張這種彩票都中一等獎的概率為. ………………………………..4分

(Ⅱ)事件的含義是“買這種彩票中獎”,或“買這種彩票中一等獎或中二等獎”…1分

顯然,事件A與事件B互斥,

所以, ………………………………..3分

故購買一張這種彩票能中獎的概率為.……………………………………………………..1分

(Ⅲ)對應(yīng)不中獎、中二等獎、中一等獎,的分布列如下:

 

…………………………………………..………………………………………………….3分

購買一張這種彩票的期望收益為損失元.…………………………………………………..3分

16.[解] (Ⅰ)由于恒成立,所以函數(shù)的定義域為………………..2分

,

(1)當(dāng)時,函數(shù),函數(shù)的值域為…………………………1分

(2)當(dāng)時,因為,所以,

,從而,………………………………………………..3分

所以函數(shù)的值域為.   ……………………………………………………….1分

(Ⅱ)假設(shè)函數(shù)是奇函數(shù),則,對于任意的,有成立,

當(dāng)時,函數(shù)是奇函數(shù).  …………………………………………………….2分

當(dāng)時,函數(shù)是偶函數(shù).  ………………………………………………..2分

當(dāng),且時,函數(shù)是非奇非偶函數(shù).  ………………………………….1分

對于任意的,且,

………………………………………..3分

所以,當(dāng)時,函數(shù)是常函數(shù)   ………………………………………..1分

當(dāng)時,函數(shù)是遞減函數(shù).   ………………………………………..1分

17.[解](Ⅰ)由題意,……………………………6分

(Ⅱ)解法1:由

,,

,

因此,可猜測)     ………………………………………………………4分

,代入原式左端得

左端

即原式成立,故為數(shù)列的通項.……………………………………………………….3分

用數(shù)學(xué)歸納法證明得3分

解法2:由 ,

,且

,……… ……………………………………………………………..4分

所以

因此,...,

將各式相乘得………………………………………………………………………………3分

(Ⅲ)設(shè)上表中每行的公比都為,且.因為,

所以表中第1行至第9行共含有數(shù)列的前63項,故在表中第10行第三列,………2分

因此.又,所以. …………………………………..3分

…………………………………………2分

18.[解](Ⅰ)動點的軌跡是以為原點,以3為半徑的球面 ……………………………1分

并設(shè)動點的坐標(biāo)為,動點滿足

則球面的方程為. …………………………………………………4分

(Ⅱ)設(shè)動點,則

所以  ……………………………………………………………5分

整理得曲面的方程:      (*)   …………………………………………2分

若坐標(biāo)系原點建在平面上的點處,可得曲面的方程:同樣得分.

(Ⅲ)(1)對稱性:由于點關(guān)于平面的對稱點、關(guān)于平面的對稱點均滿足方程(*),所以曲面關(guān)于平面與平面對稱.  …………………2分

又由于點關(guān)于軸的對稱點滿足方程(*),所以曲面關(guān)于軸對稱.

(2)范圍:由于,所以,,即曲面平面上方.  ………………2分

文本框:  (3)頂點:令,得,即坐標(biāo)原點在曲面上,點是曲面的頂點.  …2分

 

 

…………………………2分

 

 

 

 

 

 


同步練習(xí)冊答案