(2)
∴夾角
的取值范圍是(
)
………………………………………………………………6分
得…………………………………………………………………3分
解:(1)由,
(2)設(shè)以原點O為中心,對稱軸在坐標(biāo)軸上,以F為右焦點的橢圓經(jīng)過點M,且取最小值時,求橢圓的方程.
.(1)設(shè)
的取值范圍;
7、(2009屆福建省福鼎一中高三理科數(shù)學(xué)強(qiáng)化訓(xùn)練綜合卷一)已知在平面直角坐標(biāo)系中,向量
,且
6、(重慶市大足中學(xué)2009年高考數(shù)學(xué)模擬試題)已知雙曲線,P是其右支上任一點,F(xiàn)1、F2分別是雙曲線的左、右焦點,Q是P F1上的點,N是F2Q上的一點。且有
求Q點的軌跡方程。
故所求直線的方程為
,或
.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com