∵=(a,2a,-2a),
解法二:建立如圖所示的直角坐標(biāo)系,
則B(2a,0,0),E(0,2a,0),P(0,0,2a),D(a,2a,0),C(2a,a,0),
過(guò)A作AN⊥PD于N,
∴二面角A-PD-E的大小為arcsin. 10分
∴在直角△AHG中,sin∠AHG==.∴∠AHG=arcsin.
在直角△PAD中,AH=a,
在直角△PAE中,AG=a.
(2)解法一:∵∠AED=90°,
∴AE⊥ED.
∵PA⊥平面ABCDE,
∴PA⊥ED.
∴ED⊥平面PAE.
過(guò)A作AG⊥PE于G,
過(guò)DE⊥AG,
∴AG⊥平面PDE.
過(guò)G作GH⊥PD于H,連AH,
由三垂線定理得AH⊥PD.
∴∠AHG為二面角A-PD-E的平面角. 8分
19.(1)證明∵PA=AB=2a,PB=2a,
∴PA2+AB2=PB2,∴∠PAB=90°,即PA⊥AB.
同理PA⊥AE. 3分
∵AB∩AE=A,∴PA⊥平面ABCDE. 5分
答:此人恰好兩倍欠中大獎(jiǎng)的概率是. 14分
P3(2)=C23()2?(1-)3-2=. 13分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com