1. 方程的實根的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
見優(yōu)化設計。
[模擬試題]
數(shù)形結合思想是解答數(shù)學試題的的一種常用方法與技巧,特別是在解決選擇、填空題是發(fā)揮著奇特功效,復習中要以熟練技能、方法為目標,加強這方面的訓練,以提高解題能力和速度。
例1.
分析:
,
例2.
解:法一、常規(guī)解法:
法二、數(shù)形結合解法:
例3.
A. 1個 B. 2個 C. 3個 D. 1個或2個或3個
分析:
出兩個函數(shù)圖象,易知兩圖象只有兩個交點,故方程有2個實根,選(B)。
例4.
分析:
例5.
分析:
構造直線的截距的方法來求之。
截距。
例6.
分析:
以3為半徑的圓在x軸上方的部分,(如圖),而N則表示一條直線,其斜率k=1,縱截
例7.
MF1的中點,O表示原點,則|ON|=( )
分析:①設橢圓另一焦點為F2,(如圖),
又注意到N、O各為MF1、F1F2的中點,
∴ON是△MF1F2的中位線,
②若聯(lián)想到第二定義,可以確定點M的坐標,進而求MF1中點的坐標,最后利用兩點間的距離公式求出|ON|,但這樣就增加了計算量,方法較之①顯得有些復雜。
例8.
分析:
例9.
解法一(代數(shù)法):,
解法二(幾何法):
例10.
分析:
轉化出一元二次函數(shù)求最值;倘若對式子平方處理,將會把問題復雜化,因此該題用常規(guī)解法顯得比較困難,考慮到式中有兩個根號,故可采用兩步換元。
解:
第一象限的部分(包括端點)有公共點,(如圖)
相切于第一象限時,u取最大值
4.數(shù)形結合的思想方法應用廣泛,常見的如在解方程和解不等式問題中,在求函數(shù)的值域,最值問題中,在求復數(shù)和三角函數(shù)問題中,運用數(shù)形結合思想,不僅直觀易發(fā)現(xiàn)解題途徑,而且能避免復雜的計算與推理,大大簡化了解題過程。這在解選擇題、填空題中更顯其優(yōu)越,要注意培養(yǎng)這種思想意識,要爭取胸中有圖,見數(shù)想圖,以開拓自己的思維視野。
3.縱觀多年來的高考試題,巧妙運用數(shù)形結合的思想方法解決一些抽象的數(shù)學問題,可起到事半功倍的效果,數(shù)形結合的重點是研究“以形助數(shù)”。
2.實現(xiàn)數(shù)形結合,常與以下內容有關:①實數(shù)與數(shù)軸上的點的對應關系;②函數(shù)與圖象的對應關系;③曲線與方程的對應關系;④以幾何元素和幾何條件為背景,建立起來的概念,如復數(shù)、三角函數(shù)等;⑤所給的等式或代數(shù)式的結構含有明顯的幾何意義。
1.數(shù)形結合是數(shù)學解題中常用的思想方法,使用數(shù)形結合的方法,很多問題能迎刃而解,且解法簡捷。所謂數(shù)形結合,就是根據(jù)數(shù)與形之間的對應關系,通過數(shù)與形的相互轉化來解決數(shù)學問題的一種重要思想方法。數(shù)形結合思想通過“以形助數(shù),以數(shù)解形”,使復雜問題簡單化,抽象問題具體化能夠變抽象思維為形象思維,有助于把握數(shù)學問題的本質,它是數(shù)學的規(guī)律性與靈活性的有機結合。
7.設雙曲線C:與直線
相交于兩個不同的點A、B。
Ⅰ.求雙曲線C的離心率的取值范圍;
Ⅱ.設直線與
軸的交點為P,且
,求
的值。
6.設,
,曲線
在點
處切線的傾斜角的取值范圍為
,則點P到曲線
對稱軸距離的取值范圍是( )
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com