1.在全面復(fù)習(xí)函數(shù)有關(guān)知識的基礎(chǔ)上,進(jìn)一步深刻理解函數(shù)的有關(guān)概念,全面把握各類函數(shù)的特征,提高運(yùn)用基礎(chǔ)知識解決問題的能力.
3.重視綜合運(yùn)用知識分析問題解決問題的能力和推理論證能力的培養(yǎng).函數(shù)是數(shù)學(xué)復(fù)習(xí)的開始,還不可能在大范圍內(nèi)綜合運(yùn)用知識.但從復(fù)習(xí)開始就讓學(xué)生樹立綜合運(yùn)用知識解決問題的意識是十分重要的.推理論證能力是學(xué)生的薄弱環(huán)節(jié),近幾年高考命題中加強(qiáng)對這方面的考查,尤其是對代數(shù)推理論證能力的考查是十分必要的.本課題在例題安排上作了這方面的考慮.
具體要求是:
2.以數(shù)學(xué)知識為載體突出數(shù)學(xué)思想方法.?dāng)?shù)學(xué)思想方法是觀念性的東西,是解決數(shù)學(xué)問題的靈魂,同時(shí)它又離不開具體的數(shù)學(xué)知識.函數(shù)內(nèi)容最重要的數(shù)學(xué)思想是函數(shù)思想和數(shù)形結(jié)合的思想.此外還應(yīng)注意在解題中運(yùn)用的分類討論、換元等思想方法.解較綜合的數(shù)學(xué)問題要進(jìn)行一系列等價(jià)轉(zhuǎn)化或非等價(jià)轉(zhuǎn)化.因此本課題也十分重視轉(zhuǎn)化的數(shù)學(xué)思想.
函數(shù)的綜合復(fù)習(xí)是在系統(tǒng)復(fù)習(xí)函數(shù)有關(guān)知識的基礎(chǔ)上進(jìn)行函數(shù)的綜合應(yīng)用:
1.在應(yīng)用中深化基礎(chǔ)知識.在復(fù)習(xí)中基礎(chǔ)知識經(jīng)歷一個(gè)由分散到系統(tǒng),由單一到綜合的發(fā)展過程.這個(gè)過程不是一次完成的,而是螺旋式上升的.因此要在應(yīng)用深化基礎(chǔ)知識的同時(shí),使基礎(chǔ)知識向深度和廣度發(fā)展.
(二)函數(shù)的圖象
1.掌握描繪函數(shù)圖象的兩種基本方法--描點(diǎn)法和圖象變換法.
2.會利用函數(shù)圖象,進(jìn)一步研究函數(shù)的性質(zhì),解決方程、不等式中的問題.
3.用數(shù)形結(jié)合的思想、分類討論的思想和轉(zhuǎn)化變換的思想分析解決數(shù)學(xué)問題.
4.掌握知識之間的聯(lián)系,進(jìn)一步培養(yǎng)觀察、分析、歸納、概括和綜合分析能力.
以解析式表示的函數(shù)作圖象的方法有兩種,即列表描點(diǎn)法和圖象變換法,掌握這兩種方法是本節(jié)的重點(diǎn).
運(yùn)用描點(diǎn)法作圖象應(yīng)避免描點(diǎn)前的盲目性,也應(yīng)避免盲目地連點(diǎn)成線.要把表列在關(guān)鍵處,要把線連在恰當(dāng)處.這就要求對所要畫圖象的存在范圍、大致特征、變化趨勢等作一個(gè)大概的研究.而這個(gè)研究要借助于函數(shù)性質(zhì)、方程、不等式等理論和手段,是一個(gè)難點(diǎn).用圖象變換法作函數(shù)圖象要確定以哪一種函數(shù)的圖象為基礎(chǔ)進(jìn)行變換,以及確定怎樣的變換.這也是個(gè)難點(diǎn).
1.作函數(shù)圖象的一個(gè)基本方法
例7.作出下列函數(shù)的圖象(1)y=|x-2|(x+1);(2)y=10|lgx|.
分析:顯然直接用已知函數(shù)的解析式列表描點(diǎn)有些困難,除去對其函數(shù)性質(zhì)分析外,我們還應(yīng)想到對已知解析式進(jìn)行等價(jià)變形.
解:(1)當(dāng)x≥2時(shí),即x-2≥0時(shí),
當(dāng)x<2時(shí),即x-2<0時(shí),
這是分段函數(shù),每段函數(shù)圖象可根據(jù)二次函數(shù)圖象作出(見圖6)
(2)當(dāng)x≥1時(shí),lgx≥0,y=10|lgx|=10lgx=x;
當(dāng)0<x<1時(shí),lgx<0,
所以
這是分段函數(shù),每段函數(shù)可根據(jù)正比例函數(shù)或反比例函數(shù)作出.(見圖7)
說明:作不熟悉的函數(shù)圖象,可以變形成基本函數(shù)再作圖,但要注意變形過程是否等價(jià),要特別注意x,y的變化范圍.因此必須熟記基本函數(shù)的圖象.例如:一次函數(shù)、反比例函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù),及三角函數(shù)、反三角函數(shù)的圖象.
在變換函數(shù)解析式中運(yùn)用了轉(zhuǎn)化變換和分類討論的思想.
2.作函數(shù)圖象的另一個(gè)基本方法--圖象變換法.
一個(gè)函數(shù)圖象經(jīng)過適當(dāng)?shù)淖儞Q(如平移、伸縮、對稱、旋轉(zhuǎn)等),得到另一個(gè)與之相關(guān)的圖象,這就是函數(shù)的圖象變換.
在高中,主要學(xué)習(xí)了三種圖象變換:平移變換、伸縮變換、對稱變換.
(1)平移變換
函數(shù)y=f(x+a)(a≠0)的圖象可以通過把函數(shù)y=f(x)的圖象向左(a>0)或向右(a<0)平移|a|個(gè)單位而得到;
函數(shù)y=f(x)+b(b≠0)的圖象可以通過把函數(shù)y=f(x)的圖象向上(b>0)或向下(b<0)平移|b|個(gè)單位而得到.
(2)伸縮變換
函數(shù)y=Af(x)(A>0,A≠1)的圖象可以通過把函數(shù)y=f(x)的圖象上各點(diǎn)的縱坐標(biāo)伸長(A>1)或縮短(0<A<1)成原來的A倍,橫坐標(biāo)不變而得到.
函數(shù)y=f(ωx)(ω>0,ω≠1)的圖象可以通過把函數(shù)y=f(x)的圖象上
而得到.
(3)對稱變換
函數(shù)y=-f(x)的圖象可以通過作函數(shù)y=f(x)的圖象關(guān)于x軸對稱的圖形而得到.
函數(shù)y=f(-x)的圖象可以通過作函數(shù)y=f(x)的圖象關(guān)于y軸對稱的圖形而得到.
函數(shù)y=-f(-x)的圖象可以通過作函數(shù)y=f(x)的圖象關(guān)于原點(diǎn)對稱的圖形而得到.
函數(shù)y=f-1(x)的圖象可以通過作函數(shù)y=f(x)的圖象關(guān)于直線y=x對稱的圖形而得到。
函數(shù)y=f(|x|)的圖象可以通過作函數(shù)y=f(x)在y軸右方的圖象及其與y軸對稱的圖形而得到.
函數(shù)y=|f(x)|的圖象可以通過作函數(shù)y=f(x)的圖象,然后把在x軸下方的圖象以x軸為對稱軸翻折到x軸上方,其余部分保持不變而得到.
例8.已知f(x+199)=4x+4x+3(x∈R),那么函數(shù)f(x)的最小值為____.
分析:由f(x+199)的解析式求f(x)的解析式運(yùn)算量較大,但這里我們注意到,y=f(x +100)與y=f(x),其圖象僅是左右平移關(guān)系,它們?nèi)〉?/p>
求得f(x)的最小值即f(x+199)的最小值是2.
說明:函數(shù)圖象與函數(shù)性質(zhì)本身在學(xué)習(xí)中也是密切聯(lián)系的,是“互相利用”關(guān)系,函數(shù)圖象在判斷函數(shù)奇偶性、單調(diào)性、周期性及求最值等方面都有重要用途.
(一)函數(shù)的性質(zhì)
函數(shù)的性質(zhì)是研究初等函數(shù)的基石,也是高考考查的重點(diǎn)內(nèi)容.在復(fù)習(xí)中要肯于在對定義的深入理解上下功夫.
復(fù)習(xí)函數(shù)的性質(zhì),可以從“數(shù)”和“形”兩個(gè)方面,從理解函數(shù)的單調(diào)性和奇偶性的定義入手,在判斷和證明函數(shù)的性質(zhì)的問題中得以鞏固,在求復(fù)合函數(shù)的單調(diào)區(qū)間、函數(shù)的最值及應(yīng)用問題的過程中得以深化.具體要求是:
1.正確理解函數(shù)單調(diào)性和奇偶性的定義,能準(zhǔn)確判斷函數(shù)的奇偶性,以及函數(shù)在某一區(qū)間的單調(diào)性,能熟練運(yùn)用定義證明函數(shù)的單調(diào)性和奇偶性.
2.從數(shù)形結(jié)合的角度認(rèn)識函數(shù)的單調(diào)性和奇偶性,深化對函數(shù)性質(zhì)幾何特征的理解和運(yùn)用,歸納總結(jié)求函數(shù)最大值和最小值的常用方法.
3.培養(yǎng)學(xué)生用運(yùn)動(dòng)變化的觀點(diǎn)分析問題,提高學(xué)生用換元、轉(zhuǎn)化、數(shù)形結(jié)合等數(shù)學(xué)思想方法解決問題的能力.
這部分內(nèi)容的重點(diǎn)是對函數(shù)單調(diào)性和奇偶性定義的深入理解.
函數(shù)的單調(diào)性只能在函數(shù)的定義域內(nèi)來討論.函數(shù)y=f(x)在給定區(qū)間上的單調(diào)性,反映了函數(shù)在區(qū)間上函數(shù)值的變化趨勢,是函數(shù)在區(qū)間上的整體性質(zhì),但不一定是函數(shù)在定義域上的整體性質(zhì).函數(shù)的單調(diào)性是對某個(gè)區(qū)間而言的,所以要受到區(qū)間的限制.
對函數(shù)奇偶性定義的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)這兩個(gè)等式上,要明確對定義域內(nèi)任意一個(gè)x,都有f(-x)=f(x),f(-x)=-f(x)的實(shí)質(zhì)是:函數(shù)的定義域關(guān)于原點(diǎn)對稱.這是函數(shù)具備奇偶性的必要條件.稍加推廣,可得函數(shù)f(x)的圖象關(guān)于直線x=a對稱的充要條件是對定義域內(nèi)的任意x,都有f(x+a)=f(a-x)成立.函數(shù)的奇偶性是其相應(yīng)圖象的特殊的對稱性的反映.
這部分的難點(diǎn)是函數(shù)的單調(diào)性和奇偶性的綜合運(yùn)用.根據(jù)已知條件,調(diào)動(dòng)相關(guān)知識,選擇恰當(dāng)?shù)姆椒ń鉀Q問題,是對學(xué)生能力的較高要求.
1.對函數(shù)單調(diào)性和奇偶性定義的理解
例4.下面四個(gè)結(jié)論:①偶函數(shù)的圖象一定與y軸相交;②奇函數(shù)的圖象一定通過原點(diǎn);③偶函數(shù)的圖象關(guān)于y軸對稱;④既是奇函數(shù)又是偶函數(shù)的函數(shù)一定是f(x)=0(x∈R),其中正確命題的個(gè)數(shù)是 ( )
A.1 B.2 C.3 D.4
分析:偶函數(shù)的圖象關(guān)于y軸對稱,但不一定相交,因此③正確,①錯(cuò)誤.
奇函數(shù)的圖象關(guān)于原點(diǎn)對稱,但不一定經(jīng)過原點(diǎn),因此②不正確.
若y=f(x)既是奇函數(shù),又是偶函數(shù),由定義可得f(x)=0,但不一定x∈R,如例1中的(3),故④錯(cuò)誤,選A.
說明:既奇又偶函數(shù)的充要條件是定義域關(guān)于原點(diǎn)對稱且函數(shù)值恒為零.
2.復(fù)合函數(shù)的性質(zhì)
復(fù)合函數(shù)y=f[g(x)]是由函數(shù)u=g(x)和y=f(u)構(gòu)成的,因變量y通過中間變量u與自變量x建立起函數(shù)關(guān)系,函數(shù)u=g(x)的值域是y=f(u)定義域的子集.
復(fù)合函數(shù)的性質(zhì)由構(gòu)成它的函數(shù)性質(zhì)所決定,具備如下規(guī)律:
(1)單調(diào)性規(guī)律
如果函數(shù)u=g(x)在區(qū)間[m,n]上是單調(diào)函數(shù),且函數(shù)y=f(u)在區(qū)間[g(m),g(n)] (或[g(n),g(m)])上也是單調(diào)函數(shù),那么
若u=g(x),y=f(u)增減性相同,則復(fù)合函數(shù)y=f[g(x)]為增函數(shù);若u=g(x),y= f(u)增減性不同,則y=f[g(x)]為減函數(shù).
(2)奇偶性規(guī)律
若函數(shù)g(x),f(x),f[g(x)]的定義域都是關(guān)于原點(diǎn)對稱的,則u=g(x),y=f(u)都是奇函數(shù)時(shí),y=f[g(x)]是奇函數(shù);u=g(x),y=f(u)都是偶函數(shù),或者一奇一偶時(shí),y= f[g(x)]是偶函數(shù).
例5.若y=log(2-ax)在[0,1]上是x的減函數(shù),則a的取值范圍是( )
A.(0,1) B.(1,2) C.(0,2) D.[2,+∞)
分析:本題存在多種解法,但不管哪種方法,都必須保證:①使log(2-ax)有意義,即a>0且a≠1,2-ax>0.②使log
(2-ax)在[0,1]上是x的減函數(shù).由于所給函數(shù)可分解為y=log
u,u=2-ax,其中u=2-ax在a>0時(shí)為減函數(shù),所以必須a>1;③[0,1]必須是y=log
(2-ax)定義域的子集.
解法一:因?yàn)閒(x)在[0,1]上是x的減函數(shù),所以f(0)>f(1),
即log2>log
(2-a).
解法二:由對數(shù)概念顯然有a>0且a≠1,因此u=2-ax在[0,1]上是減函數(shù),y= logu應(yīng)為增函數(shù),得a>1,排除A,C,再令
故排除D,選B.
說明:本題為1995年全國高考試題,綜合了多個(gè)知識點(diǎn),無論是用直接法,還是用排除法都需要概念清楚,推理正確.
3.函數(shù)單調(diào)性與奇偶性的綜合運(yùn)用
例6.甲、乙兩地相距Skm,汽車從甲地勻速行駛到乙地,速度不得超過c km/h,已知汽車每小時(shí)的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度v(km/h)的平方成正比,比例系數(shù)為b;固定部分為a元.
(1)把全程運(yùn)輸成本y(元)表示為速度v(km/h)的函數(shù),并指出這個(gè)函數(shù)的定義域;
(2)為了使全程運(yùn)輸成本最小,汽車應(yīng)以多大速度行駛.
分析:(1)難度不大,抓住關(guān)系式:全程運(yùn)輸成本=單位時(shí)間運(yùn)輸成本×全程運(yùn)輸時(shí)間,而全程運(yùn)輸時(shí)間=(全程距離)÷(平均速度)就可以解決.
故所求函數(shù)及其定義域?yàn)?sub>
但由于題設(shè)條件限制汽車行駛速度不超過ckm/h,所以(2)的解決需要
論函數(shù)的增減性來解決.
由于vv
>0,v
-v
>0,并且
又S>0,所以即
則當(dāng)v=c時(shí),y取最小值.
說明:此題是1997年全國高考試題.由于限制汽車行駛速度不得超過c,因而求最值的方法也就不完全是常用的方法,再加上字母的抽象性,使難度有所增大.
3.求函數(shù)解析式舉例
例3.已知xy<0,并且4x-9y
=36.由此能否確定一個(gè)函數(shù)關(guān)系y=f(x)?如果能,求出其解析式、定義域和值域;如果不能,請說明理由.
分析: 4x-9y
=36在解析幾何中表示雙曲線的方程,僅此當(dāng)然不能確定一個(gè)函數(shù)關(guān)系y=f(x),但加上條件xy<0呢?
所以
因此能確定一個(gè)函數(shù)關(guān)系y=f(x).其定義域?yàn)?-∞,-3)∪(3,+∞).且不難得到其值域?yàn)?-∞,0)∪(0,+∞).
說明:本例從某種程度上揭示了函數(shù)與解析幾何中方程的內(nèi)在聯(lián)系.任何一個(gè)函數(shù)的解析式都可看作一個(gè)方程,在一定條件下,方程也可轉(zhuǎn)化為表示函數(shù)的解析式.求函數(shù)解析式還有兩類問題:
(1)求常見函數(shù)的解析式.由于常見函數(shù)(一次函數(shù),二次函數(shù),冪函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù)及反三角函數(shù))的解析式的結(jié)構(gòu)形式是確定的,故可用待定系數(shù)法確定其解析式.這里不再舉例.
(2)從生產(chǎn)、生活中產(chǎn)生的函數(shù)關(guān)系的確定.這要把有關(guān)學(xué)科知識,生活經(jīng)驗(yàn)與函數(shù)概念結(jié)合起來,舉例也宜放在函數(shù)復(fù)習(xí)的以后部分.
2.求函數(shù)值域的基本類型和常用方法
函數(shù)的值域是由其對應(yīng)法則和定義域共同決定的.其類型依解析式的特點(diǎn)分可分三類:(1)求常見函數(shù)值域;(2)求由常見函數(shù)復(fù)合而成的函數(shù)的值域;(3)求由常見函數(shù)作某些“運(yùn)算”而得函數(shù)的值域.
1.求函數(shù)定義域的基本類型和常用方法
由給定函數(shù)解析式求其定義域這類問題的代表,實(shí)際上是求使給定式有意義的x的取值范圍.它依賴于對各種式的認(rèn)識與解不等式技能的熟練.這里的最高層次要求是給出的解析式還含有其他字
例2.已知函數(shù)定義域?yàn)?0,2),求下列函數(shù)的定義域:
分析:x的函數(shù)f(x)是由u=x
與f(u)這兩個(gè)函數(shù)復(fù)合而成的復(fù)合函數(shù),其中x是自變量,u是中間變量.由于f(x),f(u)是同一個(gè)函數(shù),故(1)為已知0<u<2,即0<x
<2.求x的取值范圍.
解:(1)由0<x<2, 得
說明:本例(1)是求函數(shù)定義域的第二種類型,即不給出f(x)的解析式,由f(x)的定義域求函數(shù)f[g(x)]的定義域.關(guān)鍵在于理解復(fù)合函數(shù)的意義,用好換元法.(2)是二種類型的綜合.
求函數(shù)定義域的第三種類型是一些數(shù)學(xué)問題或?qū)嶋H問題中產(chǎn)生的函數(shù)關(guān)系,求其定義域。
3.通過對分段定義函數(shù),復(fù)合函數(shù),抽象函數(shù)等的認(rèn)識,進(jìn)一步體會函數(shù)關(guān)系的本質(zhì),進(jìn)一步樹立運(yùn)動(dòng)變化,相互聯(lián)系、制約的函數(shù)思想,為函數(shù)思想的廣泛運(yùn)用打好基礎(chǔ).
本部分的難點(diǎn)首先在于克服“函數(shù)就是解析式”的片面認(rèn)識,真正明確不僅函數(shù)的對應(yīng)法則,而且其定義域都包含著對函數(shù)關(guān)系的制約作用,并真正以此作為處理問題的指導(dǎo).其次在于確定函數(shù)三要素、求反函數(shù)等課題的綜合性,不僅要用到解方程,解不等式等知識,還要用到換元思想、方程思想等與函數(shù)有關(guān)概念的結(jié)合.
Ⅰ 深化對函數(shù)概念的認(rèn)識
例1.下列函數(shù)中,不存在反函數(shù)的是 ( )
分析:處理本題有多種思路.分別求所給各函數(shù)的反函數(shù),看是否存在是不好的,因?yàn)檫^程太繁瑣.
從概念看,這里應(yīng)判斷對于給出函數(shù)值域內(nèi)的任意值,依據(jù)相應(yīng)的對應(yīng)法則,是否在其定義域內(nèi)都只有惟一確定的值與之對應(yīng),因此可作出給定函數(shù)的圖象,用數(shù)形結(jié)合法作判斷,這是常用方法。
此題作為選擇題還可采用估算的方法.對于D,y=3是其值域內(nèi)一個(gè)值,但若y=3,則可能x=2(2>1),也可能x=-1(-1≤-1).依據(jù)概念,則易得出D中函數(shù)不存在反函數(shù).于是決定本題選D.
說明:不論采取什么思路,理解和運(yùn)用函數(shù)與其反函數(shù)的關(guān)系是這里解決問題的關(guān)鍵.
由于函數(shù)三要素在函數(shù)概念中的重要地位,那么掌握確定函數(shù)三要素的基本方法當(dāng)然成了函數(shù)概念復(fù)習(xí)中的重要課題.
例1.(重慶市)函數(shù)的定義域是( D )
A、 B、
C、
D、
例2.(天津市)函數(shù)(
)的反函數(shù)是( D )
A、 B、
C、 D、
也有個(gè)別小題的難度較大,如
例3.(北京市)函數(shù)其中P、M為實(shí)數(shù)集R的兩個(gè)非空子集,又規(guī)定
,
,給出下列四個(gè)判斷:
①若,則
②若
,則
③若,則
④若
,則
其中正確判斷有( B )
A、 1個(gè) B、 2個(gè) C、 3個(gè) D、 4個(gè)
分析:若,則只有
這一種可能.②和④是正確的.
Ⅱ 系統(tǒng)小結(jié)確定函數(shù)三要素的基本類型與常用方法
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com