0  430532  430540  430546  430550  430556  430558  430562  430568  430570  430576  430582  430586  430588  430592  430598  430600  430606  430610  430612  430616  430618  430622  430624  430626  430627  430628  430630  430631  430632  430634  430636  430640  430642  430646  430648  430652  430658  430660  430666  430670  430672  430676  430682  430688  430690  430696  430700  430702  430708  430712  430718  430726  447090 

5.導(dǎo)數(shù)的應(yīng)用

(1)一般地,設(shè)函數(shù)在某個(gè)區(qū)間可導(dǎo),如果,則為增函數(shù);如果,則為減函數(shù);如果在某區(qū)間內(nèi)恒有,則為常數(shù);

(2)曲線在極值點(diǎn)處切線的斜率為0,極值點(diǎn)處的導(dǎo)數(shù)為0;曲線在極大值點(diǎn)左側(cè)切線的斜率為正,右側(cè)為負(fù);曲線在極小值點(diǎn)左側(cè)切線的斜率為負(fù),右側(cè)為正;

(3)一般地,在區(qū)間[a,b]上連續(xù)的函數(shù)f在[a,b]上必有最大值與最小值。①求函數(shù)ƒ在(a,b)內(nèi)的極值; ②求函數(shù)ƒ在區(qū)間端點(diǎn)的值ƒ(a)、ƒ(b); ③將函數(shù)ƒ 的各極值與ƒ(a)、ƒ(b)比較,其中最大的是最大值,其中最小的是最小值。

試題詳情

4.兩個(gè)函數(shù)的和、差、積的求導(dǎo)法則

法則1:兩個(gè)函數(shù)的和(或差)的導(dǎo)數(shù),等于這兩個(gè)函數(shù)的導(dǎo)數(shù)的和(或差),

即: (

法則2:兩個(gè)函數(shù)的積的導(dǎo)數(shù),等于第一個(gè)函數(shù)的導(dǎo)數(shù)乘以第二個(gè)函數(shù),加上第一個(gè)

函數(shù)乘以第二個(gè)函數(shù)的導(dǎo)數(shù),即:

若C為常數(shù),則.即常數(shù)與函數(shù)的積的導(dǎo)數(shù)等于常數(shù)乘以函數(shù)的導(dǎo)數(shù):

法則3兩個(gè)函數(shù)的商的導(dǎo)數(shù),等于分子的導(dǎo)數(shù)與分母的積,減去分母的導(dǎo)數(shù)與分子的積,再除以分母的平方:‘=(v0)。

形如y=f的函數(shù)稱為復(fù)合函數(shù)。復(fù)合函數(shù)求導(dǎo)步驟:分解--求導(dǎo)--回代。法則:y'|= y'| ·u'|

試題詳情

3.常見函數(shù)的導(dǎo)出公式.

 (1)(C為常數(shù))  (2)

 (3)    (4)

試題詳情

2.導(dǎo)數(shù)的幾何意義

  函數(shù)y=f(x)在點(diǎn)x處的導(dǎo)數(shù)的幾何意義是曲線y=f(x)在點(diǎn)p(x,f(x)) 處的切線的斜率。也就是說,曲線y=f(x)在點(diǎn)p(x,f(x))處的切線的斜率是f’(x)。相應(yīng)地,切線方程為y-y=f/(x)(x-x)。

試題詳情

1.導(dǎo)數(shù)的概念

函數(shù)y=f(x),如果自變量x在x處有增量,那么函數(shù)y相應(yīng)地有增量=f(x+)-f(x),比值叫做函數(shù)y=f(x)在x到x+之間的平均變化率,即=

 如果當(dāng)時(shí),有極限,我們就說函數(shù)y=f(x)在點(diǎn)x處可導(dǎo),并把這個(gè)極限叫做f(x)在點(diǎn)x處的導(dǎo)數(shù),記作f’(x)或y’|

即f(x)==。

說明:

(1)函數(shù)f(x)在點(diǎn)x處可導(dǎo),是指時(shí),有極限。如果不存在極限,就說函數(shù)在點(diǎn)x處不可導(dǎo),或說無導(dǎo)數(shù)。

(2)是自變量x在x處的改變量,時(shí),而是函數(shù)值的改變量,可以是零。

 由導(dǎo)數(shù)的定義可知,求函數(shù)y=f(x)在點(diǎn)x處的導(dǎo)數(shù)的步驟(可由學(xué)生來歸納):

(1)求函數(shù)的增量=f(x+)-f(x);

(2)求平均變化率=;

(3)取極限,得導(dǎo)數(shù)f’(x)=。

試題詳情

導(dǎo)數(shù)是高中數(shù)學(xué)中重要的內(nèi)容,是解決實(shí)際問題的強(qiáng)有力的數(shù)學(xué)工具,運(yùn)用導(dǎo)數(shù)的有關(guān)知識(shí),研究函數(shù)的性質(zhì):?jiǎn)握{(diào)性、極值和最值是高考的熱點(diǎn)問題。在高考中考察形式多種多樣,以選擇題、填空題等主觀題目的形式考察基本概念、運(yùn)算及導(dǎo)數(shù)的應(yīng)用,也經(jīng)常以解答題形式和其它數(shù)學(xué)知識(shí)結(jié)合起來,綜合考察利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值,估計(jì)2007年高考繼續(xù)以上面的幾種形式考察不會(huì)有大的變化:

(1)考查形式為:選擇題、填空題、解答題各種題型都會(huì)考察,選擇題、填空題一般難度不大,屬于高考題中的中低檔題,解答題有一定難度,一般與函數(shù)及解析幾何結(jié)合,屬于高考的中低檔題;

(2)07年高考可能涉及導(dǎo)數(shù)綜合題,以導(dǎo)數(shù)為數(shù)學(xué)工具考察:導(dǎo)數(shù)的物理意義及幾何意義,復(fù)合函數(shù)、數(shù)列、不等式等知識(shí)。

定積分是新課標(biāo)教材新增的內(nèi)容,主要包括定積分的概念、微積分基本定理、定積分的簡(jiǎn)單應(yīng)用,由于定積分在實(shí)際問題中非常廣泛,因而07年的高考預(yù)測(cè)會(huì)在這方面考察,預(yù)測(cè)07年高考呈現(xiàn)以下幾個(gè)特點(diǎn):

(1)新課標(biāo)第1年考察,難度不會(huì)很大,注意基本概念、基本性質(zhì)、基本公式的考察及簡(jiǎn)單的應(yīng)用;高考中本講的題目一般為選擇題、填空題,考查定積分的基本概念及簡(jiǎn)單運(yùn)算,屬于中低檔題;

(2)定積分的應(yīng)用主要是計(jì)算面積,諸如計(jì)算曲邊梯形的面積、變速直線運(yùn)動(dòng)等實(shí)際問題要很好的轉(zhuǎn)化為數(shù)學(xué)模型。

試題詳情

1.導(dǎo)數(shù)及其應(yīng)用

(1)導(dǎo)數(shù)概念及其幾何意義

① 通過對(duì)大量實(shí)例的分析,經(jīng)歷由平均變化率過渡到瞬時(shí)變化率的過程,了解導(dǎo)數(shù)概念的實(shí)際背景,知道瞬時(shí)變化率就是導(dǎo)數(shù),體會(huì)導(dǎo)數(shù)的思想及其內(nèi)涵;

②通過函數(shù)圖像直觀地理解導(dǎo)數(shù)的幾何意義。

(2)導(dǎo)數(shù)的運(yùn)算

① 能根據(jù)導(dǎo)數(shù)定義求函數(shù)y=c,y=x,y=x2,y=x3,y=1/x,y=x 的導(dǎo)數(shù);

② 能利用給出的基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算法則求簡(jiǎn)單函數(shù)的導(dǎo)數(shù),能求簡(jiǎn)單的復(fù)合函數(shù)(僅限于形如f(ax+b))的導(dǎo)數(shù);

③ 會(huì)使用導(dǎo)數(shù)公式表。

(3)導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用

① 結(jié)合實(shí)例,借助幾何直觀探索并了解函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系;能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求不超過三次的多項(xiàng)式函數(shù)的單調(diào)區(qū)間;

② 結(jié)合函數(shù)的圖像,了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件;會(huì)用導(dǎo)數(shù)求不超過三次的多項(xiàng)式函數(shù)的極大值、極小值,以及閉區(qū)間上不超過三次的多項(xiàng)式函數(shù)最大值、最小值;體會(huì)導(dǎo)數(shù)方法在研究函數(shù)性質(zhì)中的一般性和有效性。

(4)生活中的優(yōu)化問題舉例

例如,使利潤(rùn)最大、用料最省、效率最高等優(yōu)化問題,體會(huì)導(dǎo)數(shù)在解決實(shí)際問題中的作用。

(5)定積分與微積分基本定理

① 通過實(shí)例(如求曲邊梯形的面積、變力做功等),從問題情境中了解定積分的實(shí)際背景;借助幾何直觀體會(huì)定積分的基本思想,初步了解定積分的概念;

② 通過實(shí)例(如變速運(yùn)動(dòng)物體在某段時(shí)間內(nèi)的速度與路程的關(guān)系),直觀了解微積分基本定理的含義。

(6)數(shù)學(xué)文化

收集有關(guān)微積分創(chuàng)立的時(shí)代背景和有關(guān)人物的資料,并進(jìn)行交流;體會(huì)微積分的建立在人類文化發(fā)展中的意義和價(jià)值。具體要求見本《標(biāo)準(zhǔn)》中"數(shù)學(xué)文化"的要求。

試題詳情

4.注意數(shù)學(xué)中的轉(zhuǎn)化思想的運(yùn)用

(1)常用等角定理或平行移動(dòng)直線及平面的方法轉(zhuǎn)化所求角的位置;

(2)常用平行線間、平行線面間或平行平面間距離相等為依據(jù)轉(zhuǎn)化所求距離的位置;

(3)常用割補(bǔ)法或等積(等面積或等體積)變換解決有關(guān)距離及體積問題。

試題詳情

3.求空間中線面的夾角或距離需注意以下幾點(diǎn):

①注意根據(jù)定義找出或作出所求的成角或距離,一般情況下,力求明確所求角或距離的位置;

②作線面角的方法除平移外,補(bǔ)形也是常用的方法之一;求線面角的關(guān)鍵是尋找兩“足”(斜足與垂足),而垂足的尋找通常用到面面垂直的性質(zhì)定理;

③求二面角高考中每年必考,復(fù)習(xí)時(shí)必須高度重視.二面角的平角的常用作法有三種:

根據(jù)定義或圖形特征作;根據(jù)三垂線定理(或其逆定理)作,難點(diǎn)在于找到面的垂線。解決辦法,先找面面垂直,利用面面垂直的性質(zhì)定理即可找到面的垂線;作棱的垂面。

作二面角的平面角應(yīng)把握先找后作的原則。此外在解答題中一般不用公式“cosθ”求二面角否則要適當(dāng)扣分。

④求點(diǎn)到平面的距離常用方法是直接法與間接法,利用直接法求距離需找到點(diǎn)在面內(nèi)的射影,此時(shí)常考慮面面垂直的性質(zhì)定理與幾何圖形的特殊性質(zhì)。而間接法中常用的是等積法及轉(zhuǎn)移法;

⑤求角與距離的關(guān)鍵是將空間的角與距離靈活轉(zhuǎn)化為平面上的角與距離,然后將所求量置于一個(gè)三角形中,通過解三角形最終求得所需的角與距離。

試題詳情

2.把空間問題轉(zhuǎn)化為平面問題,從解決平面問題而使空間問題得以解決。求角的三個(gè)基本步驟:“作”、“證”、“算”。

試題詳情


同步練習(xí)冊(cè)答案