(11)若隨機(jī)變量X~N(μ,σ2),則P(X≤μ)= .
(12)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,
并在兩種坐標(biāo)系中取相同的長度單位,已知直線的
極坐標(biāo)方程為,它與曲線
(α為參數(shù))相交于兩點(diǎn)A和B,則
|AB|= .
(13)程序框圖(即算法流程圖)如圖所示,其輸出結(jié)果是
.
(14)給定兩個長度為1的平面向量和,它們的夾
角為120°.如圖所示,點(diǎn)C在以O(shè)為圓心的圓弧
上變動.若,其中,則x+y
的最大值是 .
(15)對于四面體ABCD,下列命題正確的是
(寫出所有正確命題的編號).
①相對棱AB與CD所在的直線異面;
②由頂點(diǎn)A作四面體的高,其垂足是△BCD三條高線的交點(diǎn);
③若分別作△ABC和△ABD的邊AB上的高,則這兩條高所在的直線異面;
④分別作三組相對棱中點(diǎn)的連線,所得的三條線段相交于一點(diǎn);
⑤最長棱必有某個端點(diǎn),由它引出的另兩條棱的長度之和大于最長棱.
(1)i是虛數(shù)單位,若(a、b∈R),則乘積ab的值是
(A)-15 (B)-3 (C)3 (D)15
(2)若集合A={x|︱2x-1︱<3},B={x|<0},則A∩B是
(A){x|-1<x<或2<x<3} (B){x|2<x<3}
(C){x|<x<2} (D){x|-1<x<}
(3)下列曲線中離心率為的是
(A) (B)
(C) (D)
(4)下列選項中,是的必要不充分條件的是
(A),
(B), 的圖像不過第二象限
(C),
(D), 在上為增函數(shù)
(5)已知為等差數(shù)列,,。以表示的前n項和,則使得達(dá)到最大值的n是
(A)21 (B)20 (C)19 (D)18
(6)設(shè),函數(shù)的圖像可能是
(7)若不等式組 所表示的平面區(qū)域被直線分為面積相等的兩
部分,則k的值是
(A) (B) (C) (D)
(8)已知函數(shù),的圖像與直線的兩個相鄰交點(diǎn)的距離等于,則的單調(diào)遞增區(qū)間是
(A) (B)
(C) (D)
(9)已知函數(shù)在R上滿足,則曲線在點(diǎn)處的切線方程是
(A) (B) (C) (D)
(10)考察正方體6個面的中心,甲從這6個點(diǎn)中任意選兩個點(diǎn)連成直線,乙也從這6個點(diǎn)種任意選兩個點(diǎn)連成直線,則所得的兩條直線相互平行但不重合的概率等于
(A) (B) (C) (D)
(在此卷上答題無效)
2009年普通高等學(xué)校招生全國統(tǒng)一考試(安徽卷)
數(shù) 學(xué)(理科)
第Ⅱ卷(非選擇題 共100分)
請用0.5毫米黑色墨水簽字筆在答題卡上作答,在試題卷上答題無效.
(17)(本小題滿分12分)
為了測量兩山頂M,N間的距離,飛機(jī)沿水平方向在A,B兩點(diǎn)進(jìn)行測量,A,B,M,N在同一個鉛垂平面內(nèi)(如示意圖),飛機(jī)能夠測量的數(shù)據(jù)有俯角和A,B間的距離,請設(shè)計一個方案,包括:①指出需要測量的數(shù)據(jù)(用字母表示,并在圖中標(biāo)出);②用文字和公式寫出計算M,N間的距離的步驟。
(17) 解:
方案一:①需要測量的數(shù)據(jù)有:A
點(diǎn)到M,N點(diǎn)的俯角;B點(diǎn)到M,
N的俯角;A,B的距離 d (如圖)
所示) . ……….3分
②第一步:計算AM . 由正弦定理。
第二步:計算AN . 由正弦定理;
第三步:計算MN. 由余弦定理 .
方案二:①需要測量的數(shù)據(jù)有:
A點(diǎn)到M,N點(diǎn)的俯角,;B點(diǎn)到M,N點(diǎn)的府角,;A,B的距離 d (如圖所示).
②第一步:計算BM . 由正弦定理;
第二步:計算BN . 由正弦定理;
第三步:計算MN . 由余弦定理
(18)(本小題滿分12分)
某工廠有工人1000名, 其中250名工人參加過短期培訓(xùn)(稱為A類工人),另外750名工人參加過長期培訓(xùn)(稱為B類工人),現(xiàn)用分層抽樣方法(按A類、B類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(此處生產(chǎn)能力指一天加工的零件數(shù))。
(I)求甲、乙兩工人都被抽到的概率,其中甲為A類工人,乙為B類工人;
(II)從A類工人中的抽查結(jié)果和從B類工人中的抽插結(jié)果分別如下表1和表2.
表1:
生產(chǎn)能力分組 |
|
|
|
|
|
人數(shù) |
4 |
8 |
|
5 |
3 |
表2:
生產(chǎn)能力分組 |
|
|
|
|
人數(shù) |
6 |
y |
36 |
18 |
(i)先確定x,y,再在答題紙上完成下列頻率分布直方圖。就生產(chǎn)能力而言,A類工人中個體間的差異程度與B類工人中個體間的差異程度哪個更?(不用計算,可通過觀察直方圖直接回答結(jié)論)
(ii)分別估計A類工人和B類工人生產(chǎn)能力的平均數(shù),并估計該工廠工人的生產(chǎn)能力的平均數(shù),同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)
(18) 解:
(Ⅰ)甲、乙被抽到的概率均為,且事件“甲工人被抽到”與事件“乙工人被抽到”相互獨(dú)立,故甲、乙兩工人都被抽到的概率為
.
(Ⅱ)(i)由題意知A類工人中應(yīng)抽查25名,B類工人中應(yīng)抽查75名.
故 ,得,
,得 .
頻率分布直方圖如下
從直方圖可以判斷:B類工人中個體間的關(guān)異程度更小 .
(ii) ,
,
A類工人生產(chǎn)能力的平均數(shù),B類工人生產(chǎn)能力的平均數(shù)以及全工廠工人生產(chǎn)能力的平均數(shù)的會計值分別為123,133.8和131.1 .
(19)(本小題滿分12分)
如圖,四棱錐S-ABCD 的底面是正方形,每條側(cè)棱的長都是地面邊長的倍,P為側(cè)棱SD上的點(diǎn)!
(Ⅰ)求證:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,求二面角P-AC-D的大小
(Ⅲ)在(Ⅱ)的條件下,側(cè)棱SC上是否存在一點(diǎn)E,
使得BE∥平面PAC。若存在,求SE:EC的值;
若不存在,試說明理由。
(19)解法一:
(Ⅰ)連BD,設(shè)AC交BD于O,由題意。在正方形ABCD中,,所以,得.
(Ⅱ)設(shè)正方形邊長,則。
又,所以,
連,由(Ⅰ)知,所以,
且,所以是二面角的平面角。
由,知,所以,
即二面角的大小為。
(Ⅲ)在棱SC上存在一點(diǎn)E,使
由(Ⅱ)可得,故可在上取一點(diǎn),使,過作的平行線與的交點(diǎn)即為。連BN。在中知,又由于,故平面,得,由于,故.
解法二:
(Ⅰ);連,設(shè)交于于,由題意知.以O(shè)為坐標(biāo)原點(diǎn),分別為軸、軸、軸正方向,建立坐標(biāo)系如圖。
設(shè)底面邊長為,則高。
于是
故
從而
(Ⅱ)由題設(shè)知,平面的一個法向量,平面的一個法向量,設(shè)所求二面角為,則,所求二面角的大小為
(Ⅲ)在棱上存在一點(diǎn)使.
由(Ⅱ)知是平面的一個法向量,
且
設(shè)
則
而
即當(dāng)時,
而不在平面內(nèi),故
(20)(本小題滿分12分)
已知橢圓C的中心為直角坐標(biāo)系xOy的原點(diǎn),焦點(diǎn)在s軸上,它的一個頂點(diǎn)到兩個焦點(diǎn)的距離分別是7和1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若P為橢圓C上的動點(diǎn),M為過P且垂直于x軸的直線上的點(diǎn),=λ,求點(diǎn)M的軌跡方程,并說明軌跡是什么曲線!
(20)解:
(Ⅰ)設(shè)橢圓長半軸長及半焦距分別為,由已知得
,
所以橢圓的標(biāo)準(zhǔn)方程為
(Ⅱ)設(shè),其中。由已知及點(diǎn)在橢圓上可得
。
整理得,其中。
(i)時;喌
所以點(diǎn)的軌跡方程為,軌跡是兩條平行于軸的線段。
(ii)時,方程變形為,其中
當(dāng)時,點(diǎn)的軌跡為中心在原點(diǎn)、實軸在軸上的雙曲線滿足的部分。
當(dāng)時,點(diǎn)的軌跡為中心在原點(diǎn)、長軸在軸上的橢圓滿足的部分;
當(dāng)時,點(diǎn)的軌跡為中心在原點(diǎn)、長軸在軸上的橢圓;
(21)(本小題滿分12分)
已知函數(shù)
(I) 如,求的單調(diào)區(qū)間;
(II) 若在單調(diào)增加,在單調(diào)減少,證明
<6.
(21)解:
(Ⅰ)當(dāng)時,,故
當(dāng)
當(dāng)
從而單調(diào)減少.
(Ⅱ)
由條件得:從而
因為所以
將右邊展開,與左邊比較系數(shù)得,故
又由此可得
于是
請考生在第(22)、(23)、(24)三題中任選一題作答,如果多做,則按所做的第一題記分。作答時用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑。
(22)本小題滿分10分)選修4-1:幾何證明選講
如圖,已知的兩條角平分線和相交于H,,F(xiàn)在上,
且。
(I) 證明:B,D,H,E四點(diǎn)共圓:
(II) 證明:平分。
(22)解:
(Ⅰ)在△ABC中,因為∠B=60°,
所以∠BAC+∠BCA=120°.
因為AD,CE是角平分線,
所以∠HAC+∠HCA=60°,
故∠AHC=120°.
于是∠EHD=∠AHC=120°.
因為∠EBD+∠EHD=180°,
所以B,D,H,E四點(diǎn)共圓.
(Ⅱ)連結(jié)BH,則BH為∠ABC的平分線,得∠HBD=30°
由(Ⅰ)知B,D,H,E四點(diǎn)共圓,
所以∠CED=∠HBD=30°.
又∠AHE=∠EBD=60°,由已知可得EF⊥AD,
可得∠CEF=30°.
所以CE平分∠DEF.
(23)(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程。
已知曲線C: (t為參數(shù)), C:(為參數(shù))。
(1)化C,C的方程為普通方程,并說明它們分別表示什么曲線;
(2)若C上的點(diǎn)P對應(yīng)的參數(shù)為,Q為C上的動點(diǎn),求中點(diǎn)到直線
(t為參數(shù))距離的最小值。
(23)解:
(Ⅰ)
為圓心是(,半徑是1的圓.
為中心是坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,長半軸長是8,短半軸長是3的橢圓.
(Ⅱ)當(dāng)時,
為直線
從而當(dāng)時,
(24)(本小題滿分10分)選修4-5:不等式選講
如圖,O為數(shù)軸的原點(diǎn),A,B,M為數(shù)軸上三點(diǎn),C為線段OM上的動點(diǎn),設(shè)x表示C與原點(diǎn)的距離,y 表示C到A距離4倍與C道B距離的6倍的和.
(1)將y表示成x的函數(shù);
(2)要使y的值不超過70,x 應(yīng)該在什么范圍內(nèi)取值?
(24)解:
(Ⅰ)
(Ⅱ)依題意,x滿足
{
解不等式組,其解集為[9,23]
所以 w.w.w.k.s.5.u.c
(13)設(shè)已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為F(1,0),直線l與拋物線C相交于A,B兩點(diǎn)。若AB的中點(diǎn)為(2,2),則直線的方程為_____________.
解析:拋物線的方程為,
答案:y=x
(14)已知函數(shù)y=sin(x+)(>0, -<)的圖像如圖所示,則 =________________
解析:由圖可知,
答案:
(15)7名志愿者中安排6人在周六、周日兩天參加社區(qū)公益活動。若每天安排3人,則不同的安排方案共有________________種(用數(shù)字作答)。
解析:,答案:140
(16)等差數(shù)列{}前n項和為。已知+-=0,=38,則m=_______
解析:由+-=0得到。
答案10
(17)(本小題滿分12分)
如圖,為了解某海域海底構(gòu)造,在海平面內(nèi)一條直線上的A,B,C三點(diǎn)進(jìn)行測量,已知,,于A處測得水深,于B處測得水深,于C處測得水深,求∠DEF的余弦值!
(18)(本小題滿分12分)
如圖,在三棱錐中,⊿是等邊三角形,∠PAC=∠PBC=90 º
(Ⅰ)證明:AB⊥PC
(Ⅱ)若,且平面⊥平面,
求三棱錐體積。
(19)(本小題滿分12分)
某工廠有工人1000名,其中250名工人參加過短期培訓(xùn)(稱為A類工人),另外750名工人參加過長期培訓(xùn)(稱為B類工人).現(xiàn)用分層抽樣方法(按A類,B類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力指一天加工的零件數(shù)).
(Ⅰ)A類工人中和B類工人各抽查多少工人?
(Ⅱ)從A類工人中抽查結(jié)果和從B類工人中的抽查結(jié)果分別如下表1和表2
表1:
生產(chǎn)能力分組 |
|
|
|
|
|
人數(shù) |
4 |
8 |
|
5 |
3 |
表2:
生產(chǎn)能力分組 |
|
|
|
|
人數(shù) |
6 |
y |
36 |
18 |
(1) 先確定,再在答題紙上完成下列頻率分布直方圖。就生產(chǎn)能力而言,A類工人中個體間的差異程度與B類工人中個體間的差異程度哪個更?(不用計算,可通過觀察直方圖直接回答結(jié)論)
(ii)分別估計類工人和類工人生產(chǎn)能力的平均數(shù),并估計該工廠工人和生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)。
(20)(本小題滿分12分)
已知橢圓的中心為直角坐標(biāo)系的原點(diǎn),焦點(diǎn)在軸上,它的一個項點(diǎn)到兩個
焦點(diǎn)的距離分別是7和1
(I) 求橢圓的方程‘
(II) 若為橢圓的動點(diǎn),為過且垂直于軸的直線上的點(diǎn),
(e為橢圓C的離心率),求點(diǎn)的軌跡方程,并說明軌跡是什么曲線。
(21)(本小題滿分12分)
已知函數(shù).
(1) 設(shè),求函數(shù)的極值;
(2) 若,且當(dāng)時,12a恒成立,試確定的取值范圍.
請考生在第(22)、(23)、(24)三題中任選一題作答,如果多做,則按所做的第一題計分。作答時用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑。
(22)(本小題滿分10分)選修4-1;幾何證明選講
如圖,已知ABC中的兩條角平分線和相交于,B=60,在上,且。
(1)證明:四點(diǎn)共圓;
(2)證明:CE平分DEF。
(23)(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程。
已知曲線C: (t為參數(shù)), C:(為參數(shù))。
(1)化C,C的方程為普通方程,并說明它們分別表示什么曲線;
(2)若C上的點(diǎn)P對應(yīng)的參數(shù)為,Q為C上的動點(diǎn),求中點(diǎn)到直線
(t為參數(shù))距離的最小值!
(24)(本小題滿分10分)選修4-5:不等式選講
如圖,為數(shù)軸的原點(diǎn),為數(shù)軸上三點(diǎn),為線段上的動點(diǎn),設(shè)表示與原點(diǎn)的距離, 表示到距離4倍與到距離的6倍的和.
(1)將表示為的函數(shù);
(2)要使的值不超過70, 應(yīng)該在什么范圍內(nèi)取值?
2009年普通高等學(xué)校招生全國統(tǒng)一考試
(17)(本小題滿分12分)
在△ABC中,A、B為銳角,角A、B、C所對的邊分別為a、b、c,且
(Ⅰ)求A+B的值;
(Ⅱ)若得值.
(18)(本小題滿分12分)
為振興旅游業(yè),四川省2009年面向國內(nèi)發(fā)行總量為2000萬張的熊貓優(yōu)惠卡,向省外人士發(fā)行的是熊貓金卡(簡稱金卡),向省內(nèi)人士發(fā)行的是熊貓銀卡(簡稱銀卡),某旅游公司組織了一個有36名游客的旅游團(tuán)到四川名勝旅游,其中是省外游客,其余是省內(nèi)游客,在省外游客中有持金卡,在省內(nèi)游客中有持銀卡.
(Ⅰ)在該團(tuán)中隨即采訪2名游客,求恰有1人持銀卡的概率;
(Ⅱ)在該團(tuán)中隨機(jī)采訪2名游客,求其中持金卡與持銀卡人數(shù)相當(dāng)?shù)母怕?
(19)(本小題滿分12分)如圖,正方形ABCD所在平面與平面四邊形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB=AE,FA=FE,∠AEF=45°.
(Ⅰ)求證:EF⊥平面BCE;
(Ⅱ)設(shè)線段CD、AE的中點(diǎn)分別為P、M,求證:PM∥平面BCE;
(Ⅲ)求二面角F-BD-A的大小.
(20)(本小題滿分12分)
已知函數(shù)的圖象在與x軸交點(diǎn)處的切線方程是
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè)函數(shù)的極值存在,求實數(shù)m的取值范圍以及函數(shù)取得極值時對應(yīng)的自變量x的值.
(21)(本小題滿分12分)
已知橢圓的左、右焦點(diǎn)分別為,離心率,右準(zhǔn)線方程為x=2.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)的直線與該橢圓相交于M、N兩點(diǎn),且求直線的方程式.
(22)(本小題滿分14分)
設(shè)數(shù)列的前n項和為對任意的正整數(shù)n,都有成立,記
(Ⅰ)求數(shù)列與數(shù)列的通項公式;
(Ⅱ)設(shè)數(shù)列的前n項和為R,是否存在正整數(shù)k,使得成立?若存在,找出一個正整數(shù)k;若不存在,請說明理由;
(Ⅲ)記的前n項和味,求證:對任意正整數(shù)n,都有
(13)拋物線的焦點(diǎn)到準(zhǔn)線的距離是 .
(14)的展開式的常數(shù)項是 .(用數(shù)字作答)
(15)如圖,已知正三棱柱的各條棱長都相等,M是側(cè)棱的中點(diǎn),側(cè)異面直線所成的角的大小是 .
(16)設(shè)V是已知平面M上所有向量的集合,對于映射記若映射滿足:對所有及任意實數(shù)都有
稱為平面M上的線性變換,現(xiàn)有下列命題:
① 設(shè)是平面M上的線性變換,
② 若e是平面M上的單位向量,對是平面M上的線性變換;
③ 對則是平面M上的線性變換;
④ 設(shè)是平面M上的線性變換,,則對任意實數(shù)k均有
其中的真命題是 .(寫出所有真命題的編號)
17(本小題滿分10分)
設(shè)的內(nèi)角、、的對邊長分別為、、,,,求。
分析:由,易想到先將代入得。然后利用兩角和與差的余弦公式展開得;又由,利用正弦定理進(jìn)行邊角互化,得,進(jìn)而得.故。大部分考生做到這里忽略了檢驗,事實上,當(dāng)時,由,進(jìn)而得,矛盾,應(yīng)舍去。
也可利用若則從而舍去。不過這種方法學(xué)生不易想到。
評析:本小題考生得分易,但得滿分難。
18(本小題滿分12分)
如圖,直三棱柱中,、分別為、的中點(diǎn),平面
(I)證明:
(II)設(shè)二面角為60°,求與平面所成的角的大小。
(I)分析一:連結(jié)BE,為直三棱柱,
為的中點(diǎn),。又平面,
(射影相等的兩條斜線段相等)而平面,
(相等的斜線段的射影相等)。
分析二:取的中點(diǎn),證四邊形為平行四邊形,進(jìn)而證∥,,得也可。
分析三:利用空間向量的方法。具體解法略。
(II)分析一:求與平面所成的線面角,只需求點(diǎn)到面的距離即可。
作于,連,則,為二面角的平面角,.不妨設(shè),則.在中,由,易得.
設(shè)點(diǎn)到面的距離為,與平面所成的角為。利用,可求得,又可求得
即與平面所成的角為
分析二:作出與平面所成的角再行求解。如圖可證得,所以面。由分析一易知:四邊形為正方形,連,并設(shè)交點(diǎn)為,則,為在面內(nèi)的射影。。以下略。
分析三:利用空間向量的方法求出面的法向量,則與平面所成的角即為與法向量的夾角的余角。具體解法詳見高考試題參考答案。
總之在目前,立體幾何中的兩種主要的處理方法:傳統(tǒng)方法與向量的方法仍處于各自半壁江山的狀況。命題人在這里一定會兼顧雙方的利益。
19(本小題滿分12分)
設(shè)數(shù)列的前項和為 已知
(I)設(shè),證明數(shù)列是等比數(shù)列
(II)求數(shù)列的通項公式。
解:(I)由及,有
由,...① 則當(dāng)時,有.....②
②-①得
又,是首項,公比為2的等比數(shù)列.
(II)由(I)可得,
數(shù)列是首項為,公差為的等比數(shù)列.
,
評析:第(I)問思路明確,只需利用已知條件尋找.
第(II)問中由(I)易得,這個遞推式明顯是一個構(gòu)造新數(shù)列的模型:,主要的處理手段是兩邊除以.
總體來說,09年高考理科數(shù)學(xué)全國I、Ⅱ這兩套試題都將數(shù)列題前置,主要考查構(gòu)造新數(shù)列(全國I還考查了利用錯位相減法求前n項和的方法),一改往年的將數(shù)列結(jié)合不等式放縮法問題作為押軸題的命題模式。具有讓考生和一線教師重視教材和基礎(chǔ)知識、基本方法基本技能,重視兩綱的導(dǎo)向作用。也可看出命題人在有意識降低難度和求變的良苦用心。
20(本小題滿分12分)
某車間甲組有10名工人,其中有4名女工人;乙組有5名工人,其中有3名女工人,現(xiàn)采用分層抽樣方法(層內(nèi)采用不放回簡單隨機(jī)抽樣)從甲、乙兩組中共抽取3名工人進(jìn)行技術(shù)考核。
(I)求從甲、乙兩組各抽取的人數(shù);
(II)求從甲組抽取的工人中恰有1名女工人的概率;
(III)記表示抽取的3名工人中男工人數(shù),求的分布列及數(shù)學(xué)期望!
分析:(I)這一問較簡單,關(guān)鍵是把握題意,理解分層抽樣的原理即可。另外要注意此分層抽樣與性別無關(guān)。
(II)在第一問的基礎(chǔ)上,這一問處理起來也并不困難。
從甲組抽取的工人中恰有1名女工人的概率
(III)的可能取值為0,1,2,3
,,
,
分布列及期望略。
評析:本題較常規(guī),比08年的概率統(tǒng)計題要容易。在計算時,采用分類的方法,用直接法也可,但較繁瑣,考生應(yīng)增強(qiáng)靈活變通的能力。
(21)(本小題滿分12分)
已知橢圓的離心率為,過右焦點(diǎn)F的直線與相交于、兩點(diǎn),當(dāng)的斜率為1時,坐標(biāo)原點(diǎn)到的距離為
(I)求,的值;
(II)上是否存在點(diǎn)P,使得當(dāng)繞F轉(zhuǎn)到某一位置時,有成立?
若存在,求出所有的P的坐標(biāo)與的方程;若不存在,說明理由。
解:(I)設(shè),直線,由坐標(biāo)原點(diǎn)到的距離為
則,解得 .又.
(II)由(I)知橢圓的方程為.設(shè)、
由題意知的斜率為一定不為0,故不妨設(shè)
代入橢圓的方程中整理得,顯然。
由韋達(dá)定理有:........①
.假設(shè)存在點(diǎn)P,使成立,則其充要條件為:
點(diǎn),點(diǎn)P在橢圓上,即。
整理得。
又在橢圓上,即.
故................................②
將及①代入②解得
,=,即.
當(dāng);
當(dāng).
評析:處理解析幾何題,學(xué)生主要是在“算”上的功夫不夠。所謂“算”,主要講的是算理和算法。算法是解決問題采用的計算的方法,而算理是采用這種算法的依據(jù)和原因,一個是表,一個是里,一個是現(xiàn)象,一個是本質(zhì)。有時候算理和算法并不是截然區(qū)分的。例如:三角形的面積是用底乘高的一半還是用兩邊與夾角的正弦的一半,還是分割成幾部分來算?在具體處理的時候,要根據(jù)具體問題及題意邊做邊調(diào)整,尋找合適的突破口和切入點(diǎn)。
22.(本小題滿分12分)
設(shè)函數(shù)有兩個極值點(diǎn),且
(I)求的取值范圍,并討論的單調(diào)性;
(II)證明:
解: (I)
令,其對稱軸為。由題意知是方程的兩個均大于的不相等的實根,其充要條件為,得
⑴當(dāng)時,在內(nèi)為增函數(shù);
⑵當(dāng)時,在內(nèi)為減函數(shù);
⑶當(dāng)時,在內(nèi)為增函數(shù);
(II)由(I),
設(shè),
則
⑴當(dāng)時,在單調(diào)遞增;
⑵當(dāng)時,,在單調(diào)遞減。
故.
16. 已知為圓:的兩條相互垂直的弦,垂足為,則四邊形的面積的最大值為 。
解:設(shè)圓心到的距離分別為,則.
四邊形的面積
15.設(shè)是球的半徑,是的中點(diǎn),過且與成45°角的平面截球的表面得到圓。若圓的面積等于,則球的表面積等于 .
解:設(shè)球半徑為,圓的半徑為,
因為。由得.故球的表面積等于.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com