0  441243  441251  441257  441261  441267  441269  441273  441279  441281  441287  441293  441297  441299  441303  441309  441311  441317  441321  441323  441327  441329  441333  441335  441337  441338  441339  441341  441342  441343  441345  441347  441351  441353  441357  441359  441363  441369  441371  441377  441381  441383  441387  441393  441399  441401  441407  441411  441413  441419  441423  441429  441437  447090 

9.復(fù)數(shù)z=a+ai  (a≠0)的輻角主值是______________。

試題詳情

8.z∈C,方程z-3|z|+2=0的解的個(gè)數(shù)是_____。

A.  2    B.  3   C.  4    D.  5

試題詳情

7. 到空間不共面的4個(gè)點(diǎn)距離相等的平面的個(gè)數(shù)是_____。

  A.  7   B.  6   C.  5    D.  4

試題詳情

6.方程(x-x-1)=1的整數(shù)解的個(gè)數(shù)是_____。

  A.  1   B.  3   C.  4    D.  5

試題詳情

5. 函數(shù)f(x)=ax-2ax+2+b  (a≠0)在閉區(qū)間[2,3]上有最大值5,最小值2,則a、b的值為_(kāi)____。

  A.  a=1,b=0      B. a=1,b=0或a=-1,b=3

  C.  a=-1,b=3     D. 以上答案均不正確

試題詳情

4. 設(shè)f(x,y)=0是橢圓方程,f(x,y)=0是直線方程,則方程f(x,y)+λf(x,y)=0  (λ∈R)表示的曲線是_____。

  A.只能是橢圓   B.橢圓或直線   C.橢圓或一點(diǎn)   D.還有上述外的其它情況

試題詳情

3.  f(x)=(a-x)|3a-x|,a是正常數(shù),下列結(jié)論正確的是_____。

A.當(dāng)x=2a時(shí)有最小值0      B.當(dāng)x=3a時(shí)有最大值0

C.無(wú)最大值,且無(wú)最小值     D.有最小值但無(wú)最大值

試題詳情

2.  非零實(shí)數(shù)a、b、c,則+++的值組成的集合是_____。

A. {-4,4}   B. {0,4}   C. {-4,0}    D. {-4,0,4}

試題詳情

1.  若log<1,則a的取值范圍是_____。

A. (0, )   B. (,1)   C. (0, )∪(1,+∞)   D. (,+∞)

試題詳情

7.過(guò)點(diǎn)P(2,3),且在坐標(biāo)軸上的截距相等的直線方程是_____。

A. 3x-2y=0   B. x+y-5=0   C. 3x-2y=0或x+y-5=0   D.不能確定

[簡(jiǎn)解]1小題:對(duì)參數(shù)a分a>0、a=0、a<0三種情況討論,選B;

2小題:對(duì)底數(shù)a分a>1、0<a<1兩種情況討論,選C;

3小題:分x在第一、二、三、四象限等四種情況,答案{4,-2,0};

4小題:分θ=、0<θ<<θ<三種情況,選D;

5小題:分x>0、x<0兩種情況,選B;

6小題:分側(cè)面矩形長(zhǎng)、寬分別為2和4、或4和2兩種情況,選D;

7小題:分截距等于零、不等于零兩種情況,選C。

Ⅱ、示范性題組:

例1. 設(shè)0<x<1,a>0且a≠1,比較|log(1-x)|與|log(1+x)|的大小。

[分析] 比較對(duì)數(shù)大小,運(yùn)用對(duì)數(shù)函數(shù)的單調(diào)性,而單調(diào)性與底數(shù)a有關(guān),所以對(duì)底數(shù)a分兩類情況進(jìn)行討論。

[解] ∵ 0<x<1   ∴  0<1-x<1 ,   1+x>1

①  當(dāng)0<a<1時(shí),log(1-x)>0,log(1+x)<0,所以 |log(1-x)|-|log(1+x)|=log(1-x)-[-log(1+x)]=log(1-x)>0;

②  當(dāng)a>1時(shí),log(1-x)<0,log(1+x)>0,所以 |log(1-x)|-|log(1+x)|=-log(1-x) -log(1+x)=-log(1-x)>0;

由①、②可知,|log(1-x)|>|log(1+x)|。

[注]本題要求對(duì)對(duì)數(shù)函數(shù)y=logx的單調(diào)性的兩種情況十分熟悉,即當(dāng)a>1時(shí)其是增函數(shù),當(dāng)0<a<1時(shí)其是減函數(shù)。去絕對(duì)值時(shí)要判別符號(hào),用到了函數(shù)的單調(diào)性;最后差值的符號(hào)判斷,也用到函數(shù)的單調(diào)性。

例2. 已知集合A和集合B各含有12個(gè)元素,A∩B含有4個(gè)元素,試求同時(shí)滿足下面兩個(gè)條件的集合C的個(gè)數(shù):  ①. CA∪B且C中含有3個(gè)元素;  ②. C∩A≠φ  。

[分析] 由已知并結(jié)合集合的概念,C中的元素分兩類:①屬于A 元素;②不屬于A而屬于B的元素。并由含A中元素的個(gè)數(shù)1、2、3,而將取法分三種。

[解]  C·C+C·C+C·C=1084

[注]本題是排列組合中“包含與排除”的基本問(wèn)題,正確地解題的前提是合理科學(xué)的分類,達(dá)到分類完整及每類互斥的要求,還有一個(gè)關(guān)鍵是要確定C中元素如何取法。另一種解題思路是直接使用“排除法”,即C-C=1084。

例3. 設(shè){a}是由正數(shù)組成的等比數(shù)列,S是前n項(xiàng)和! ①. 證明:  <lgS;    ②.是否存在常數(shù)c>0,使得=lg(S-c)成立?并證明結(jié)論。(95年全國(guó)理)

[分析] 要證的不等式和討論的等式可以進(jìn)行等價(jià)變形;再應(yīng)用比較法而求解。其中在應(yīng)用等比數(shù)列前n項(xiàng)和的公式時(shí),由于公式的要求,分q=1和q≠1兩種情況。

[解] 設(shè){a}的公比q,則a>0,q>0

①.當(dāng)q=1時(shí),S=na,從而SS-S=na(n+2)a-(n+1)a=-a<0;

  當(dāng)q≠1時(shí),S,從而

SS-S=-aq<0;

由上可得SS<S,所以lg(SS)<lg(S),即<lgS。

②. 要使=lg(S-c)成立,則必有(S-c)(S-c)=(S-c),

分兩種情況討論如下:

當(dāng)q=1時(shí),S=na,則

(S-c)(S-c)-(S-c)=(na-c)[(n+2)a-c]-[(n+1)a-c]=-a<0

當(dāng)q≠1時(shí),S,則(S-c)(S-c)-(S-c)=[-c][ -c]-[-c]=-aq[a-c(1-q)]

∵  aq≠0   ∴  a-c(1-q)=0即c=

而S-c=S=-<0    ∴對(duì)數(shù)式無(wú)意義

由上綜述,不存在常數(shù)c>0, 使得=lg(S-c)成立。

[注] 本例由所用公式的適用范圍而導(dǎo)致分類討論。該題文科考生改問(wèn)題為:證明>logS ,和理科第一問(wèn)類似,只是所利用的是底數(shù)是0.5時(shí),對(duì)數(shù)函數(shù)為單調(diào)遞減。

例1、例2、例3屬于涉及到數(shù)學(xué)概念、定理、公式、運(yùn)算性質(zhì)、法則等是分類討論的問(wèn)題或者分類給出的,我們解決時(shí)按要求進(jìn)行分類,即題型為概念、性質(zhì)型。

例4. 設(shè)函數(shù)f(x)=ax-2x+2,對(duì)于滿足1<x<4的一切x值都有f(x)>0,求實(shí)數(shù)a的取值范圍。

     1   4    x     1   4   x

[分析] 含參數(shù)的一元二次函數(shù)在有界區(qū)間上的最大值、最小值等值域問(wèn)題,需要先對(duì)開(kāi)口方向討論,再對(duì)其拋物線對(duì)稱軸的位置與閉區(qū)間的關(guān)系進(jìn)行分類討論,最后綜合得解。

[解]當(dāng)a>0時(shí),f(x)=a(x-)+2-

∴ a≥1或<a<1或φ     即 a>

當(dāng)a<0時(shí),,解得φ;

當(dāng)a=0時(shí),f(x)=-2x+2, f(1)=0,f(4)=-6, ∴不合題意

由上而得,實(shí)數(shù)a的取值范圍是a> 。

[注]本題分兩級(jí)討論,先對(duì)決定開(kāi)口方向的二次項(xiàng)系數(shù)a分a>0、a<0、a=0三種情況,再每種情況結(jié)合二次函數(shù)的圖像,在a>0時(shí)將對(duì)稱軸與閉區(qū)間的關(guān)系分三種,即在閉區(qū)間左邊、右邊、中間。本題的解答,關(guān)鍵是分析符合條件的二次函數(shù)的圖像,也可以看成是“數(shù)形結(jié)合法”的運(yùn)用。

例5. 解不等式>0  (a為常數(shù),a≠-)

[分析] 含參數(shù)的不等式,參數(shù)a決定了2a+1的符號(hào)和兩根-4a、6a的大小,故對(duì)參數(shù)a分四種情況a>0、a=0、-<a<0、a<-分別加以討論。

[解] 2a+1>0時(shí),a>-;   -4a<6a時(shí),a>0 ! 所以分以下四種情況討論:

當(dāng)a>0時(shí),(x+4a)(x-6a)>0,解得:x<-4a或x>6a;

當(dāng)a=0時(shí),x>0,解得:x≠0;

當(dāng)-<a<0時(shí),(x+4a)(x-6a)>0,解得: x<6a或x>-4a;

當(dāng)a>-時(shí),(x+4a)(x-6a)<0,解得: 6a<x<-4a 。

綜上所述,當(dāng)a>0時(shí),x<-4a或x>6a;當(dāng)a=0時(shí),x≠0;當(dāng)-<a<0時(shí),x<6a或x>-4a;當(dāng)a>-時(shí),6a<x<-4a 。

[注] 本題的關(guān)鍵是確定對(duì)參數(shù)a分四種情況進(jìn)行討論,做到不重不漏。一般地,遇到題目中含有參數(shù)的問(wèn)題,常常結(jié)合參數(shù)的意義及對(duì)結(jié)果的影響而進(jìn)行分類討論,此種題型為含參型。

例6. 設(shè)a≥0,在復(fù)數(shù)集C中,解方程:z+2|z|=a ! (90年全國(guó)高考)

[分析]由已知z+2|z|=a和|z|∈R可以得到z∈R,即對(duì)z分實(shí)數(shù)、純虛數(shù)兩種情況進(jìn)行討論求解。

[解] ∵ |z|∈R,由z+2|z|=a得:z∈R;  ∴ z為實(shí)數(shù)或純虛數(shù)

當(dāng)z∈R時(shí),|z|+2|z|=a,解得:|z|=-1+   ∴ z=±(-1+);

當(dāng)z為純虛數(shù)時(shí),設(shè)z=±yi  (y>0),  ∴ -y+2y=a  解得:y=1±  (0≤a≤1)

由上可得,z=±(-1+)或±(1±)i

[注]本題用標(biāo)準(zhǔn)解法(設(shè)z=x+yi再代入原式得到一個(gè)方程組,再解方程組)過(guò)程十分繁難,而挖掘隱含,對(duì)z分兩類討論則簡(jiǎn)化了數(shù)學(xué)問(wèn)題。

[另解] 設(shè)z=x+yi,代入得 x-y+2+2xyi=a;

當(dāng)y=0時(shí),x+2|x|=a,解得x=±(-1+),所以z=±(-1+);

當(dāng)x=0時(shí),-y+2|y|=a,解得y=±(1±),所以±(1±)i。

由上可得,z=±(-1+)或±(1±)i

[注]此題屬于復(fù)數(shù)問(wèn)題的標(biāo)準(zhǔn)解法,即設(shè)代數(shù)形式求解。其中抓住2xy=0而分x=0和y=0兩種情況進(jìn)行討論求解。實(shí)際上,每種情況中絕對(duì)值方程的求解,也滲透了分類討論思想。

例7. 在xoy平面上給定曲線y=2x,設(shè)點(diǎn)A(a,0),a∈R,曲線上的點(diǎn)到點(diǎn)A的距離的最小值為f(a),求f(a)的函數(shù)表達(dá)式!  (本題難度0.40)

[分析] 求兩點(diǎn)間距離的最小值問(wèn)題,先用公式建立目標(biāo)函數(shù),轉(zhuǎn)化為二次函數(shù)在約束條件x≥0下的最小值問(wèn)題,而引起對(duì)參數(shù)a的取值討論。

[解] 設(shè)M(x,y)為曲線y=2x上任意一點(diǎn),則

|MA|=(x-a)+y=(x-a)+2x=x-2(a-1)x+a=[x-(a-1)]+(2a-1)

由于y=2x限定x≥0,所以分以下情況討論:

當(dāng)a-1≥0時(shí),x=a-1取最小值,即|MA}=2a-1;

當(dāng)a-1<0時(shí),x=0取最小值,即|MA}=a;

綜上所述,有f(a)=   。

[注]本題解題的基本思路是先建立目標(biāo)函數(shù)。求二次函數(shù)的最大值和最小值問(wèn)題我們十分熟悉,但含參數(shù)a,以及還有隱含條件x≥0的限制,所以要從中找出正確的分類標(biāo)準(zhǔn),從而得到d=f(a)的函數(shù)表達(dá)式。

Ⅲ、鞏固性題組:

試題詳情


同步練習(xí)冊(cè)答案