4.若是奇函數(shù),且當>0時,,則當時,為( C )
(A) (B) (C)|| (D)||
3.已知函數(shù),則下面三個命題中:(1);(2);(3);其中正確的命題共有( B )
(A) 0個 (B) 1個 (C)2個 (D)3個
2.為了得到函數(shù)的圖象,可以將函數(shù)的圖象(B )
(A)向右平移個單位長度 (B)向右平移個單位長度
(C)向左平移個單位長度 (D)向左平移個單位長度
1.若,則滿足 =0.5的角 的個數(shù)是(C)
(A)2 (B)3 (C) 4 (D)5
例5. 求函數(shù)的最小值。
錯解
∴當時,
分析:在已知條件下,(1)、(2)兩處不能同時取等號。
正解:
當且僅當,即,時,
專題四:三角函數(shù)
[經(jīng)典題例]
例1:點P從(1,0)出發(fā),沿單位圓逆時針方向運動弧長到達Q點,則Q點的坐標為( )
(A) (B) (C) (D)
[思路分析] 記,由三角函數(shù)定義可知Q點的坐標滿足,故選(A)
[簡要評述]三角函數(shù)定義是三角函數(shù)理論的基礎(chǔ),理解掌握能起到事半功倍的效果。
例2:求函數(shù)的最小正周期、最大值和最小值.
[思路分析]
所以函數(shù)f(x)的最小正周期是π,最大值是,最小值是.
[簡要評述]三角恒等變形是歷年高考考察的主要內(nèi)容,變形能力的提高取決于一定量的訓(xùn)練以及方法的積累,在此例中“降次、化同角”是基本的思路。此外,求函數(shù)的周期、最值是考察的熱點,變形化簡是必經(jīng)之路。
例3:已知,
的值.
[思路分析] ∵
∴得 又
于是
[簡要評述] 此類求值問題的類型是:已知三角方程,求某三角代數(shù)式的值。一般來說先解三角方程,得角的值或角的某個三角函數(shù)值。如何使解題過程化繁為簡,變形仍然顯得重要,此題中巧用誘導(dǎo)公式、二倍角公式,還用到了常用的變形方法,即“化正余切為正余弦”。
例4:已知b、c是實數(shù),函數(shù)f(x)=對任意α、βR有:
且
(1)求f(1)的值;(2)證明:c;(3)設(shè)的最大值為10,求f(x)。
[思路分析](1)令α=,得令β=,得因此;
(2)證明:由已知,當時,當時,通過數(shù)形結(jié)合的方法可得:化簡得c;
(3)由上述可知,[-1,1]是的減區(qū)間,那么又聯(lián)立方程組可得,所以
[簡要評述]三角復(fù)合問題是綜合運用知識的一個方面,復(fù)合函數(shù)問題的認識是高中數(shù)學(xué)學(xué)習(xí)的重點和難點,這一方面的學(xué)習(xí)有利于提高綜合運用的能力。
例5:關(guān)于正弦曲線回答下述問題:
(1)函數(shù)的單調(diào)遞增區(qū)間是;
(2)若函數(shù)的圖象關(guān)于直線對稱,則的值是 1 ;
(3)把函數(shù)的圖象向右平移個單位,再將圖象上各點的橫坐標擴大到原來的3倍(縱坐標不變),則所得的函數(shù)解析式子是 ;
(4)若函數(shù)的最大值是,最小值是,最小正周期是,圖象經(jīng)過點(0,-),則函數(shù)的解析式子是;
[思路分析] 略
[簡要評述]正弦曲線問題是三角函數(shù)性質(zhì)、圖象問題中的重點內(nèi)容,必須熟練掌握。上述問題的解答可以根據(jù)正弦曲線的“五點畫法”在草稿紙上作出函數(shù)的草圖來驗證答案或得到答案。
例6:函數(shù)
(1)求f(x)的定義域;(2)求f(x)的最大值及對應(yīng)的x值。
[思路分析] (1){x|x
(2)設(shè)t=sinx+cosx, 則y=t-1
[簡要評述]若關(guān)于與的表達式,求函數(shù)的最值常通過換元法,如令,使問題得到簡化。
例7:在ΔABC中,已知(1)求證:a、b、c成等差數(shù)列;(2)求角B的取值范圍。
[思路分析](1)條件等式降次化簡得
(2)
∴……,得B的取值范圍
[簡要評述]三角形中的變換問題,除了需要運用三角式變換的所有方法、技巧外,還經(jīng)常需要考慮對條件或結(jié)論中的“邊”與“角”運用“正弦定理、余弦定理或面積公式”進行互換。
例8:水渠橫斷面為等腰梯形,如圖所示,渠道深為h,梯形面積為S,為了使渠道的滲水量達到最小,應(yīng)使梯形兩腰及下底之和達到最小,此時下底角α應(yīng)該是多少?
[思路分析] CD=, C=,轉(zhuǎn)化為考慮y=的最小值,可得當時,y最小,即C最小。
[簡要評述]“學(xué)以致用”是學(xué)習(xí)的目的之一,三角知識的應(yīng)用很廣泛,在復(fù)習(xí)過程中應(yīng)受到重視。
[熱身沖刺]
例4. 設(shè)、為銳角,且+,討論函數(shù)的最值。
錯解
可見,當時,;當時,。
分析:由已知得,∴,則
∴當,即時,,最大值不存在。
例3. 若,求的取值范圍。
錯解 移項得,兩邊平方得
即
分析:忽略了滿足不等式的在第一象限,上述解法引進了。
正解:即,由得
∴
例2. 已知,求的值及相應(yīng)的取值范圍。
錯解 當是第一、四象限時,,當是第二、三象限時,。
分析:把限制為象限角時,只考慮且的情形,遺漏了界限角。應(yīng)補充:當時,;當時,,或。
例1. 若、為第三象限角,且,則( )
(A)(B)(C)(D)以上都不對
錯解 選(A)
分析:角的概念不清,誤將象限角看成類似區(qū)間角。如取,可知(A)不對。用排除法,可知應(yīng)選(D)。
20.設(shè)平面上有直線,曲線。又有下列方式定義數(shù)列:
(1);(2)當給定后,作過點且與軸平行的直線,它與的交點記為;再過點且與軸平行的直線,它與的交點記為,定義為的橫坐標。試求數(shù)列的通項,并計算 。
解:顯然,的坐標可寫為,的坐標寫為,故有,
,兩邊取對數(shù)并整理得:, 從而得
,即 ,,
, , ,
。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com