6.二面角的求法
(1)定義法:直接在二面角的棱上取一點(特殊點),分別在兩個半平面內作棱的垂線,得出平面角,用定義法時,要認真觀察圖形的特性;
(2)三垂線法:已知二面角其中一個面內一點到一個面的垂線,用三垂線定理或逆定理作出二面角的平面角;
(3)垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個半平面的交線所成的角即為平面角,由此可知,二面角的平面角所在的平面與棱垂直;
(4)射影法:利用面積射影公式S射=S原cos,其中為平面角的大小,此方法不必在圖形中畫出平面角;
特別:對于一類沒有給出棱的二面角,應先延伸兩個半平面,使之相交出現棱,然后再選用上述方法(尤其要考慮射影法)。
5.直線與平面所成的角
斜線和平面所成的是一個直角三角形的銳角,它的三條邊分別是平面的垂線段、斜線段及斜線段在平面上的射影。通常通過斜線上某個特殊點作出平面的垂線段,垂足和斜足的連線,是產生線面角的關鍵;
4.異面直線所成角的求法:
(1)平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;
(2)補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現兩條異面直線間的關系;
3.立平斜公式:如圖,AB和平面所成的角是,AC在平面內,AC和AB的射影AB成,設∠BAC=,則coscos=cos;
2. 已知:直二面角M-AB-N中,AE M,BF N,∠EAB=,∠ABF=,異面直線AE與BF所成的角為,則
1.從一點O出發(fā)的三條射線OA、OB、OC,若∠AOB=∠AOC,則點A在平面∠BOC上的射影在∠BOC的平分線上;
13.求軌跡的常用方法:
(1)直接法:直接通過建立x、y之間的關系,構成F(x,y)=0,是求軌跡的最基本的方法;
(2)待定系數法:所求曲線是所學過的曲線:如直線,圓錐曲線等,可先根據條件列出所求曲線的方程,再由條件確定其待定系數,代回所列的方程即可;
(3)代入法(相關點法或轉移法):若動點P(x,y)依賴于另一動點Q(x1,y1)的變化而變化,并且Q(x1,y1)又在某已知曲線上,則可先用x、y的代數式表示x1、y1,再將x1、y1帶入已知曲線得要求的軌跡方程;
(4)定義法:如果能夠確定動點的軌跡滿足某已知曲線的定義,則可由曲線的定義直接寫出方程;
(5)參數法:當動點P(x,y)坐標之間的關系不易直接找到,也沒有相關動點可用時,可考慮將x、y均用一中間變量(參數)表示,得參數方程,再消去參數得普通方程。
12.處理橢圓、雙曲線、拋物線的弦中點問題常用代點相減法,設A(x1,y1)、B(x2,y2)為橢圓(a>b>0)上不同的兩點,M(x0,y0)是AB的中點,則KABKOM=;對于雙曲線(a>0,b>0),類似可得:KAB.KOM=;對于y2=2px(p≠0)拋物線有KAB=
11.對于y2=2px(p≠0)拋物線上的點的坐標可設為(,y0),以簡化計算;
10.過橢圓(a>b>0)左焦點的焦點弦為AB,則,過右焦點的弦;
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com