已知數(shù)列{an}是等比數(shù)列,且a1=
1
8
,a4=-1,則{an}的公比q為( 。
A.2B.-
1
2
C.-2D.
1
2
C
請?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等比數(shù)列,且a1=
1
8
,a4=-1,則{an}的公比q為( 。
A、2
B、-
1
2
C、-2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等比數(shù)列,且a1=
1
8
,a4=-1,則{an}的公比q為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列{an}是等比數(shù)列,且a1=
1
8
,a4=-1,則{an}的公比q為( 。
A.
1
2
B.-
1
2
C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳模擬 題型:單選題

已知數(shù)列{an}是等比數(shù)列,且a1=
1
8
,a4=-1,則{an}的公比q為( 。
A.2B.-
1
2
C.-2D.
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是公差不為零的等差數(shù)列,a1=1,且a3是a1和a9的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,f(n)=
Sn(n+18)Sn+1
,試問當(dāng)n為何值時,f(n)最大?并求出f(n)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=
23
an+n-4,bn=(-1)n(an-3n+21)其中λ為實(shí)數(shù),且λ≠-18,n為正整數(shù).
(Ⅰ)求證:{bn}是等比數(shù)列;
(Ⅱ)設(shè)0<a<b,Sn為數(shù)列{bn}的前n項(xiàng)和.是否存在實(shí)數(shù)λ,使得對任意正整數(shù)n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差大于零的等差數(shù)列{an}的前n項(xiàng)和Sn,且滿足:a2•a4=65,a1+a5=18.
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)若1<i<21,a1,ai,a21是某等比數(shù)列的連續(xù)三項(xiàng),求i值;
(3)是否存在常數(shù)k,使得數(shù)列{
Sn+kn
}為等差數(shù)列,若存在,求出常數(shù)k;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:煙臺一模 題型:解答題

已知公差大于零的等差數(shù)列{an}的前n項(xiàng)和Sn,且滿足:a2•a4=65,a1+a5=18.
(1)若1<i<21,a1,ai,a21是某等比數(shù)列的連續(xù)三項(xiàng),求i的值;
(2)設(shè)bn=
n
(2n+1)Sn
,是否存在一個最小的常數(shù)m使得b1+b2+…+bn<m對于任意的正整數(shù)n均成立,若存在,求出常數(shù)m;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省南通市六縣一市高三(上)期末沖刺數(shù)學(xué)試卷(解析版) 題型:解答題

已知公差大于零的等差數(shù)列{an}的前n項(xiàng)和Sn,且滿足:a2•a4=65,a1+a5=18.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若1<i<21,a1,ai,a21是某等比數(shù)列的連續(xù)三項(xiàng),求i值;
(3)是否存在常數(shù)k,使得數(shù)列{}為等差數(shù)列,若存在,求出常數(shù)k;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•煙臺一模)已知公差大于零的等差數(shù)列{an}的前n項(xiàng)和Sn,且滿足:a2•a4=65,a1+a5=18.
(1)若1<i<21,a1,ai,a21是某等比數(shù)列的連續(xù)三項(xiàng),求i的值;
(2)設(shè)bn=
n(2n+1)Sn
,是否存在一個最小的常數(shù)m使得b1+b2+…+bn<m對于任意的正整數(shù)n均成立,若存在,求出常數(shù)m;若不存在,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案