等差數(shù)列f(x)中,已知a1=-12,S13=0,使得an>0的最小正整數(shù)n為( 。
A.7B.8C.9D.10
B
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:濟(jì)南二模 題型:單選題

等差數(shù)列f(x)中,已知a1=-12,S13=0,使得an>0的最小正整數(shù)n為(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年山東省濟(jì)南市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:選擇題

等差數(shù)列f(x)中,已知a1=-12,S13=0,使得an>0的最小正整數(shù)n為( )
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

等差數(shù)列f(x)中,已知a1=-12,S13=0,使得an>0的最小正整數(shù)n為


  1. A.
    7
  2. B.
    8
  3. C.
    9
  4. D.
    10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•濟(jì)南二模)等差數(shù)列f(x)中,已知a1=-12,S13=0,使得an>0的最小正整數(shù)n為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a1=1,點(diǎn)(an,an+1)在函數(shù)f(x)=x2+4x+2的圖象上,其中n=1,2,3,4,…
(1)證明:數(shù)列{lg(an+2)}是等比數(shù)列;
(2)設(shè)數(shù)列{an+2}的前n項(xiàng)積為T(mén)n,求Tn及數(shù)列{an}的通項(xiàng)公式;
(3)已知bn
1
an+1
1
an+3
的等差中項(xiàng),數(shù)列{bn}的前n項(xiàng)和為Sn,求證:
3
8
Sn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知a1=1,點(diǎn)(an,an+1)在函數(shù)f(x)=x2+4x+2的圖象上,其中n=1,2,3,4,…
(1)證明:數(shù)列{lg(an+2)}是等比數(shù)列;
(2)設(shè)數(shù)列{an+2}的前n項(xiàng)積為T(mén)n,求Tn及數(shù)列{an}的通項(xiàng)公式;
(3)已知bn
1
an+1
1
an+3
的等差中項(xiàng),數(shù)列{bn}的前n項(xiàng)和為Sn,求證:
3
8
Sn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)F(x)=
3x+1
2x-1
,(x≠
1
2
)

(Ⅰ)證明:F(x)+F(1-x)=3,并求F(
1
2009
)+F(
2
2009
)+…+F(
2008
2009
)
;
(Ⅱ).已知等差數(shù)列{an}與{bn}的前n項(xiàng)和分別為Sn與Tn,且
Sn
Tn
=F(n)
.當(dāng)m>n時(shí),比較
am
bm
an
bn
的大。
(Ⅲ)在(Ⅱ)條件下,已知a1=2,數(shù)列{bn}的公差為d=2.探究在數(shù)列{an}與{bn}中是否有相等的項(xiàng),若有,求出這些相等項(xiàng)由小到大排列后得到的數(shù)列{cn}的通項(xiàng)公式;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)數(shù)列{an}的首項(xiàng)a1=m,其中0<m<1,函數(shù)f(x)=
x
1+2x

(1)若數(shù)列{an}滿足an+1=f(an)(n≥1且n∈N),證明{
1
an
}
是等差數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an}滿足an+1≤f(an)(n≥1且n∈N),數(shù)列{bn}滿足bn=
an
2n+1
,試證明b1+b2+…+bn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:韶關(guān)一模 題型:解答題

已知函數(shù)F(x)=
3x+1
2x-1
,(x≠
1
2
)

(Ⅰ)證明:F(x)+F(1-x)=3,并求F(
1
2009
)+F(
2
2009
)+…+F(
2008
2009
)
;
(Ⅱ).已知等差數(shù)列{an}與{bn}的前n項(xiàng)和分別為Sn與Tn,且
Sn
Tn
=F(n)
.當(dāng)m>n時(shí),比較
am
bm
an
bn
的大小;
(Ⅲ)在(Ⅱ)條件下,已知a1=2,數(shù)列{bn}的公差為d=2.探究在數(shù)列{an}與{bn}中是否有相等的項(xiàng),若有,求出這些相等項(xiàng)由小到大排列后得到的數(shù)列{cn}的通項(xiàng)公式;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:奉賢區(qū)一模 題型:解答題

已知:函數(shù)f(x)=
x
ax+b
(a,b∈R,ab≠0)
,f(2)=
2
3
,f(x)=x
有唯一的根.
(1)求a,b的值;
(2)數(shù)列{an}對(duì)n≥2,n∈N總有an=f(an-1),a1=1;求證{
1
an
}
為等差數(shù)列,并求出{an}的通項(xiàng)公式.
(3)是否存在這樣的數(shù)列{bn}滿足:{bn}為{an}的子數(shù)列(即{bn}中的每一項(xiàng)都是{an}的項(xiàng))且{bn}為無(wú)窮等比數(shù)列,它的各項(xiàng)和為
1
2
.若存在,找出一個(gè)符合條件的數(shù)列{bn},寫(xiě)出它的通項(xiàng)公式;若不存在,說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案