在用數(shù)學(xué)歸納法證明f(n)=
1
n
+
1
n+1
+…+
1
2n
<1(n∈N*,n≥3)的過程中:假設(shè)當(dāng)n=k(k∈N*,k≥3)時(shí),不等式f(k)<1成立,則需證當(dāng)n=k+1時(shí),f(k+1)<1也成立.若f(k+1)=f(k)+g(k),則g(k)=( 。
A.
1
2k+1
+
1
2k+2
B.
1
2k+1
+
1
2k+2
-
1
k
C.
1
2k+2
-
1
k
D.
1
2k+2
-
1
2k
B
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:成都一模 題型:單選題

在用數(shù)學(xué)歸納法證明f(n)=
1
n
+
1
n+1
+…+
1
2n
<1(n∈N*,n≥3)的過程中:假設(shè)當(dāng)n=k(k∈N*,k≥3)時(shí),不等式f(k)<1成立,則需證當(dāng)n=k+1時(shí),f(k+1)<1也成立.若f(k+1)=f(k)+g(k),則g(k)=( 。
A.
1
2k+1
+
1
2k+2
B.
1
2k+1
+
1
2k+2
-
1
k
C.
1
2k+2
-
1
k
D.
1
2k+2
-
1
2k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•成都一模)在用數(shù)學(xué)歸納法證明f(n)=
1
n
+
1
n+1
+…+
1
2n
<1(n∈N*,n≥3)的過程中:假設(shè)當(dāng)n=k(k∈N*,k≥3)時(shí),不等式f(k)<1成立,則需證當(dāng)n=k+1時(shí),f(k+1)<1也成立.若f(k+1)=f(k)+g(k),則g(k)=( 。

查看答案和解析>>


同步練習(xí)冊(cè)答案