已知M (-2,0),N (2,0),則以MN為斜邊的直角三角形直角頂點(diǎn)P的軌跡方程是(  )
A.x2+y2=2B.x2+y2=4
C.x2+y2=2(x≠±2)D.x2+y2=4(x≠±2)
D
請?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知M(2,0),N(-2,0),動點(diǎn)P滿足|PN|-|PM|=2,點(diǎn)P的軌跡為W,過點(diǎn)M的直線與軌跡W交于A,B兩點(diǎn).
(Ⅰ)求軌跡W的方程;
(Ⅱ)若2
AM
=
MB
,求直線AB斜率k的值,并判斷以線段AB為直徑的圓與直線x=
1
2
的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

10、已知M (-2,0),N (2,0),則以MN為斜邊的直角三角形直角頂點(diǎn)P的軌跡方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M(-2,0),N(2,0),|PM|-|PN|=3,則動點(diǎn)P的軌跡是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M(-2,0),N(2,0),|PM|-|PN|=4,則動點(diǎn)P的軌跡是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M(-2,0),N(2,0),|PM|-|PN|=3,則動點(diǎn)P的軌跡為
以M,N 為焦點(diǎn)的雙曲線的右支
以M,N 為焦點(diǎn)的雙曲線的右支

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M(-2,0),N(2,0),|PM|-|PN|=2,則動點(diǎn)P的軌跡是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M(-2,0),N(2,0),則以MN為斜邊的直角三角形直角頂點(diǎn)P的軌跡方程是
x2+y2=4(x≠±2)
x2+y2=4(x≠±2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M(-2,0),N(2,0),||PM|-|PN||=3,則動點(diǎn)P的軌跡是( 。
A、圓B、橢圓C、拋物線D、雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M(-2,0),N(2,0),則以MN為斜邊的直角三角形的直角頂點(diǎn)P的軌跡方程是(  )

A.x2+y2=2

B.x2+y2=4

C.x2+y2=2(x≠±2)

D.x2+y2=4(x≠±2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知M(-2,0),N(2,0)兩點(diǎn),動點(diǎn)P在y軸上的射影為H,且使數(shù)學(xué)公式數(shù)學(xué)公式分別是公比為2的等比數(shù)列的第三、四項(xiàng).
(1)求動點(diǎn)P的軌跡C的方程;
(2)已知過點(diǎn)N的直線l交曲線C于x軸下方兩個不同的點(diǎn)A、B,設(shè)R為AB的中點(diǎn),若過點(diǎn)R與定點(diǎn)Q(0,-2)的直線交x軸于點(diǎn)D(x0,0),求x0的取值范圍.

查看答案和解析>>


同步練習(xí)冊答案