已知a=4,b=2,且焦點(diǎn)在x軸上的橢圓標(biāo)準(zhǔn)方程為( 。
A.
x2
4
+
y2
2
=1
B.
y2
4
+
x2
2
=1
C.
x2
16
+
y2
4
=1
D.
y2
16
+
x2
4
=1
C
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a=4,b=2,且焦點(diǎn)在x軸上的橢圓標(biāo)準(zhǔn)方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知a=4,b=2,且焦點(diǎn)在x軸上的橢圓標(biāo)準(zhǔn)方程為(  )
A.
x2
4
+
y2
2
=1
B.
y2
4
+
x2
2
=1
C.
x2
16
+
y2
4
=1
D.
y2
16
+
x2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省郴州一中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知a=4,b=2,且焦點(diǎn)在x軸上的橢圓標(biāo)準(zhǔn)方程為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省郴州一中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知a=4,b=2,且焦點(diǎn)在x軸上的橢圓標(biāo)準(zhǔn)方程為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知a=4,b=2,且焦點(diǎn)在x軸上的橢圓標(biāo)準(zhǔn)方程為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦點(diǎn)和上頂點(diǎn)分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個(gè)橢圓的特征三角形是相似三角形,則稱這兩個(gè)橢圓為“相似橢圓”,且特征三角形的相似比即為相似橢圓的相似比.已知橢圓C1
x2
a2
+
y2
b2
=1
以拋物線y2=4
3
x
的焦點(diǎn)為一個(gè)焦點(diǎn),且橢圓上任意一點(diǎn)到兩焦點(diǎn)的距離之和為4.(1)若橢圓C2與橢圓C1相似,且相似比為2,求橢圓C2的方程.
(2)已知點(diǎn)P(m,n)(mn≠0)是橢圓C1上的任一點(diǎn),若點(diǎn)Q是直線y=nx與拋物線x2=
1
mn
y
異于原點(diǎn)的交點(diǎn),證明點(diǎn)Q一定落在雙曲線4x2-4y2=1上.
(3)已知直線l:y=x+1,與橢圓C1相似且短半軸長為b的橢圓為Cb,是否存在正方形ABCD,使得A,C在直線l上,B,D在曲線Cb上,若存在求出函數(shù)f(b)=SABCD的解析式及定義域,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=4,A(-1,0),B(1,0),直線l與圓O切于點(diǎn)S(l不垂直于x軸),拋物線過A、B兩點(diǎn)且以l為準(zhǔn)線,以F為焦點(diǎn).
(1)當(dāng)點(diǎn)S在圓周上運(yùn)動(dòng)時(shí),求證:|FA|+|FB|為定值,并求出點(diǎn)F的軌跡C方程;
(2)曲線C上有兩個(gè)動(dòng)點(diǎn)M,N,中點(diǎn)D在直線y=l上,若直線l′經(jīng)過點(diǎn)D,且在l′上任取一點(diǎn)P(不同于D點(diǎn)),都存在實(shí)數(shù)λ,使得
DP
=λ(
MP
|
MP
|
+
NP
|
NP
|
)
,證明:直線l′必過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C焦點(diǎn)在x軸上,其長軸長為4,離心率為
3
2
,
(1)設(shè)過定點(diǎn)M(0,2)的直線l與橢圓C交于不同的兩點(diǎn)A、B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍;
(2)如圖,過原點(diǎn)O任意作兩條互相垂直的直線與橢圓
x2
a2
+
y2
b2
=1
(a>b>0)相交于P,S,R,Q四點(diǎn),設(shè)原點(diǎn)O到四邊形PQSR一邊的距離為d,試求d=1時(shí)a,b滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1.(a>b>0)
,其中短軸長和焦距相等,且過點(diǎn)M(2,
2
)

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若P(x0,y0)在橢圓C的外部,過P做橢圓的兩條切線PM、PN,其中M、N為切點(diǎn),則MN的方程為
x0x
a2
+
y0y
b2
=1
.已知點(diǎn)P在直線x+y-4=0上,試求橢圓右焦點(diǎn)F到直線MN的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
3
2
,且經(jīng)過點(diǎn)M(4,1).直線l:y=x+m交橢圓于A,B兩不同的點(diǎn).
(1)求橢圓的方程.
(2)求m的取值范圍.
(3)當(dāng)m=1時(shí),求弦長|AB|的值.

查看答案和解析>>


同步練習(xí)冊(cè)答案