設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≤0時,f(x)=x2-2x,則f(2)=(  )
A.0B.8C.-8D.-2
C
請?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

7、設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),若當(dāng)x∈(0,+∞)時,f(x)=lg x,則滿足f(x)>0的x的取值范圍是
(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1、設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),且f(-3)=-2,則f(3)+f(0)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

6、設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),若當(dāng)x∈(0,+∞)時,f(x)=lgx,則滿足f(x)>0的x的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),在(
1
2
,1)
上單調(diào)遞增,且滿足f(-x)=f(x-1),給出下列結(jié)論:①f(1)=0;②函數(shù)f(x)的周期是2;③函數(shù)f(x)在(-
1
2
,0)
上單調(diào)遞增;④函數(shù)f(x+1)是奇函數(shù).
其中正確的命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

15、設(shè)函數(shù)f(x)是定義在R上的奇函數(shù)(x≠0),若當(dāng)x∈(0,+∞)時,f(x)=lgx,則滿足f(x)<0的x的取值范圍是
(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=x2+2x-2
(1)求f(-1)的值;
(2)求當(dāng)x<0時的函數(shù)f(x)的解析式
(3)求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),且對任意x∈R都有f(x)=f(x+4),當(dāng)x∈(0,2)時,f(x)=2x,則f(2012)-f(2011)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),且對任意x∈R都有f(x)=f(x+4),當(dāng) x∈(-2,0)時,f(x)=2x,則f(2012)-f(2013)的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),對任意實(shí)數(shù)x有f(
3
2
+x)=-f(
3
2
-x)
成立.
(1)證明y=f(x)是周期函數(shù),并指出其周期;
(2)若f(1)=2,求f(2)+f(3)的值;
(3)若g(x)=x2+ax+3,且y=|f(x)|•g(x)是偶函數(shù),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),且f(a)>f(b),則f(-a)
f(-b)(用“>”或“<”填空).

查看答案和解析>>


同步練習(xí)冊答案