定義在(-1,l)上的函數(shù)f (x)滿足:當(dāng)x,y∈(-1,l)時(shí),f(x)-f (y)=f(
x-y
1-xy
)
,并且當(dāng)x∈(-1,0)時(shí),f (x)>0;若P=f(
1
3
)+f(
1
4
),Q=f(
1
2
),R=f(0),則P,Q,R的大小關(guān)系為( �。�
A.R>Q>PB.R>P>QC.P>Q>RD.Q>P>R
A
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河南省鄭州市新密二高高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

定義在(-1,l)上的函數(shù)f (x)滿足:當(dāng)x,y∈(-1,l)時(shí),f(x)-f (y)=,并且當(dāng)x∈(-1,0)時(shí),f (x)>0;若P=f()+f(),Q=f(),R=f(0),則P,Q,R的大小關(guān)系為( )
A.R>Q>P
B.R>P>Q
C.P>Q>R
D.Q>P>R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

定義在(-1,l)上的函數(shù)f (x)滿足:當(dāng)x,y∈(-1,l)時(shí),f(x)-f (y)=數(shù)學(xué)公式,并且當(dāng)x∈(-1,0)時(shí),f (x)>0;若P=f(數(shù)學(xué)公式)+f(數(shù)學(xué)公式),Q=f(數(shù)學(xué)公式),R=f(0),則P,Q,R的大小關(guān)系為


  1. A.
    R>Q>P
  2. B.
    R>P>Q
  3. C.
    P>Q>R
  4. D.
    Q>P>R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

14、設(shè)函數(shù)f(x)的定義域?yàn)镈.若存在非零實(shí)數(shù)l使得對(duì)于任意x∈M.有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的l高調(diào)函數(shù),如果定義域是[-1,+∞)的函數(shù)f(x)=x2[-1,+∞)上的m高調(diào)函數(shù).求實(shí)數(shù)m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零常數(shù)l,使得對(duì)于任意x⊆M(M⊆D)都有f(x+l)≥f(x),則稱f(x)為M上的高調(diào)函數(shù),l是一個(gè)高調(diào)值.
現(xiàn)給出下列命題:
①函數(shù)f(x)=(
1
2
)
x
為R上的高調(diào)函數(shù);
②函數(shù)f(x)=sin2x為R上的高調(diào)函數(shù)
③若函數(shù)f(x)=x2+2x為(-∞,1]上的高調(diào)函數(shù),則高調(diào)值l的取值范圍是(-∞,-4].
其中正確的命題個(gè)數(shù)是(  )
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)l使得對(duì)于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的l高調(diào)函數(shù).如果定義域?yàn)镽的函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=|x-a2|-a2,且f(x)為R上的4高調(diào)函數(shù),那么實(shí)數(shù)a的取值范圍是( �。�
A、[-1,1]B、(-1,1)C、[-2,2]D、(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=p(x-
1
x
)-2lnx,g(x)=
2e
x
(p是實(shí)數(shù),e為自然對(duì)數(shù)的底數(shù))
(1)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求p的取值范圍;
(2)若直線l與函數(shù)f(x),g(x)的圖象都相切,且與函數(shù)f(x)的圖象相切于點(diǎn)(1,0),求p的值;
(3)若在[1,e]上至少存在一點(diǎn)x0,使得f(x0)>g(x0)成立,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零數(shù)l使得對(duì)于任意x∈M(M⊆D)有x+l∈D且f(x+l)≥f(x),則稱f(x)為M上的l高調(diào)函數(shù).現(xiàn)給出下列命題:
①函數(shù)f(x)=(
12
)
x
為R上的1高調(diào)函數(shù);
②函數(shù)f(x)=sin2x為R上的π高調(diào)函數(shù)
③如果定義域?yàn)閇1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上m高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是[2,+∞)其中正確的命題是
 
.(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)l使得對(duì)于任意x∈M(M⊆D),有x+l∈D,且f(x+1)≥f(x),則稱f(x)為M上的高調(diào)函數(shù).現(xiàn)給出下列三個(gè)命題:
①函數(shù)f(x)=(
12
)x
為R上的l高調(diào)函數(shù);
②函數(shù)f(x)=sin2x為R上的π高調(diào)函數(shù);
③如果定義域是[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍[2,+∞);
其中正確的命題是
②③
②③
(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)l使得對(duì)于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的l高調(diào)函數(shù).現(xiàn)給出下列命題:
①函數(shù)f(x)=2-x為R上的1高調(diào)函數(shù);
②函數(shù)f(x)=sin2x不是R上的π高調(diào)函數(shù);
③如果定義域?yàn)閇-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上m高調(diào)函數(shù),那么實(shí)數(shù)m 的取值范圍是[2,+∞);
④函數(shù)f(x)=lg(|x-2|+1)為[1,+∞)上的2高調(diào)函數(shù).
其中真命題為
③④
③④
(填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)l使得對(duì)于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的“l(fā)高調(diào)函數(shù)”.現(xiàn)給出下列命題:
①函數(shù)f(x)=log2x為(0,+∞)上的“1高調(diào)函數(shù)”;
②函數(shù)f(x)=cos2x為R上的“π高調(diào)函數(shù)”;
③如果定義域?yàn)閇-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上“m高調(diào)函數(shù)”,那么實(shí)數(shù)m的取值范圍是[-1,+∞).
其中正確的命題是
①②
①②
.(寫出所有正確命題的序號(hào))

查看答案和解析>>


同步練習(xí)冊(cè)答案